I
I was expecting intuitive responses here only.
1) a) yes b) R+ c) yes, since no two inputs share the same output
d) yes, this function in onto R+ (0 not included) e) yes
2) a) no, since f(⊕)=1 and f(⊕)=2 b) co-domain is Y
c) not one to one d) yes e) no
3) a) yes b) [3, ∞) c) yes d) yes e) yes
4) a) yes b) RxR (the Cartesian plane) c) yes d) yes e) yes

II
a) Notice that (f o g):B → B and G(f o g) = G(f(g(b)))={(1,4),(3,1),(4,6),(6,3)}
b) Notice the (f/g)(x) could only be defined on the set {1,3,4} only.
G(f/g) = { (1,3/4), (3, 3/2) } notice that (f/g)(4) is undefined so the domain will
be on the set {1,3} only.
c) No, since f(x) maps A to B and f(1) = 3 and f(3) = 3. two different inputs map
to the same output.
d) Yes, since for every element b in B there exist an element a in A such that
f(a) = b.
e) Notice that (f o g):B → B so it is one to one and onto.
d) The G(g⁻¹) = {(4,1),(2,3),(0,4),(3,6)}. Notice that g⁻¹:A → B and can only be a
function if the domain is defined to be A-{1}.

III
1) (f o g)(x) = (√x - 4)² - 9 = 3x - 13, x ∈ R
2) (g o f)(x) = √(x² - 9) - 4 = √3x² - 31, x ≥ √31/3
3) g⁻¹(x) = x² + 4/3 = 3x² + 4/3, x ∈ R
4) (h o f o g)(x) = h(f(h(x))) = 15x - 69, x ∈ R

IV
a) Show that f(x) is one to one by showing that if f(a) =f(b) then a = b where a is
in the domain and b is in the range of f(x)
Note that f(x) is defined on the domain R-{1}

If f(a) = f(b)

\[
\frac{3a}{a+1} = \frac{3b}{b+1}
\]

3a(b+1) = 3b(a+1)

3ab + 3a = 3ba + 3b

3a = 3b

a = b
b) To show that \(f(x) \) is onto we must show that for each \(b \) in the co-domain there is exist an \(a \) in the domain \(\mathbb{R} - \{-1\} \) such that \(f(a) = b \).

\[
\begin{align*}
 b &= f(a) = \frac{3a}{a+1} \\
 b(a + 1) &= 3a \\
 ba + 1 &= 3a \\
 1 &= 3a - ba \\
 1 &= a(3-b) \\
 \frac{1}{3-b} &= a
\end{align*}
\]

There exist \(a \) in the domain for every \(b \) in the co-domain except \(b = 3 \). Therefore \(f(x) \) is not onto. If we change the domain to be \(\mathbb{R} - \{3\} \) then the inverse function will exist and it will be \(f^{-1}(x) = \frac{1}{3-x} \) \(f^{-1} : \mathbb{R} - \{3\} \rightarrow \mathbb{R} - \{-1\} \).