Math 2534 Solution to in class PMI problem

Theorem:
If \(f(n) = 2^n - 1 \) and \(a_1, a_2 = 3, a_n = 3a_{n-1} - 2a_{n-2} \), for all natural number \(n > 2 \),
Then \(f(n) = a_n \ \forall n \in N \).

Proof: We will first verify that the hypothesis is true for at least one value of \(n \in N \).
Consider \(n = 1 \) and notice that \(f(1) = 2^1 - 1 = 1 \) and \(a_1 = 1 \)
Now consider \(n = 2 \), \(f(2) = 2^2 - 1 = 3 \) and \(a_2 = 3 \)
I will also verify that the pattern hold for \(n = 3 \),
\(f(3) = 2^3 - 1 = 7 \) and \(a_3 = 3a_2 - 2a_1 = 3(3) - 2(1) = 7 \)

I will now assume that my hypothesis is true from \(n = 1 \) up to some arbitrary value \(k \in N \).
ie: \(f(k) = a_k \) and I will prove true for \(k + 1 \) by showing you that \(f(k + 1) = a_{k+1} \) or to be more exact, I will show that \(2^{k+1} - 1 = a_{k+1} \)

For the body of proof we will consider that \(k + 1 \) term
\(a_{k+1} = 3a_k - 2a_{k-1} \) by the given definition of recursive sequence in our hypothesis
\(= 3f(k) - 2f(k - 1) \) by the inductive assumption
\(= 3(2^k - 1) - 2(2^{k-1} - 1) \) by the given definition of the function
\(= 3(2^k) - 3 - 2(2^{k-1}) + 2 \)
\(= 3(2^k) - 3 - 2^k + 2 \)
\(= 2(2^k) - 1 \)
\(= 2^{k+1} - 1 \)
\(= f(k + 1) \)
I have shown that \(a_{k+1} = f(k + 1) \)

In conclusion, I have assumed true up to \(k \) and proved true for \(k+1 \). Therefore the hypothesis is true of all natural numbers.