Math 2534 Solution Test 2B Spring 2015

Problem 1: (20pts) Use PMI to prove the following theorem and be clear where you use the inductive assumption. Justify all steps with complete sentences.

Theorem: For all natural numbers \(n \geq 5 \), \(2n^2 < n! \)

Proof: To verify that the hypothesis is true for at least one value of \(n \), consider \(n = 5 \).

\[
2n^2 = 2(25) = 50 < 5! = 120
\]

Now assume that the hypothesis is true from \(n = 5 \) up to some arbitrary value \(k \) so that \(2k^2 < k! \) and prove true for \(k + 1 \) by showing that \(2(k+1)^2 < (k+1)! \).

Now consider the \(k + 1 \) term \(2(k+1)^2 \).

\[
2(k+1)^2 = 2k^2 + 4k + 2 < k! + 4k + 2 \quad \text{by the inductive assumption.}
\]

So \(2(k+1)^2 < k! + 4k + 2 < k! + 4k! + k! = 5k! \) since \(k! > k > 2 \)

and \(2(k+1)^2 < 5k! < (k+1)k! = (k+1)! \) since \(k + 1 \geq 6 \).

Since we have assumed true up to \(k \) and proved true for \(k+1 \), the hypothesis is true for all \(n \geq 5 \).

Alternate proof: Let the \(k + 1 \) term be \((k + 1)! \)

\[
(k + 1)! = k!(k + 1) > 2k^2(k + 1) \quad \text{by the inductive assumption}
\]

\[
(k+1)! > 2k^2(k + 1) = 2k^3 + 2k^2 > 2k^2 + 2k = k^2 + 2k + k^2 > k^2 + 2k + 1 = (k + 1)^2
\]

Problem 2: (18pts) Prove the following using Algebra of sets where \(A \) and \(B \) are nonempty sets

(Do not try to use elements in this type of proof and give reason for each step) Theorem:

\[[A - (A \cap B)]^c = A^c \cup B \]

Proof:

\[
[A - (A \cap B)]^c = \quad \text{given}
\]

\[
[A \cap (A \cap B)^c]^c = \quad \text{by difference law}
\]

\[
[A^c \cup (A \cap B)^c] = \quad \text{by DeMorgan's law}
\]

\[
A^c \cup (A \cap B) = \quad \text{by double complement law}
\]

\[
(A^c \cup A) \cap (A^c \cup B) = \quad \text{by distributive law}
\]

\[
U \cap (A^c \cup B) = \quad \text{by the complement law}
\]

\[
A^c \cup B \quad \text{by identity law}
\]

Therefore \([A - (A \cap B)]^c = A^c \cup B \)
Problem 3: (20pts) Use PMI to prove the following theorem and be clear where you use the inductive assumption. Justify all steps with complete sentences.

Theorem: Given the Fibonacci Sequence \(f_i = 1, f_2 = 1, f_n = f_{n-1} + f_{n-2}, \) for all natural numbers \(n > 2, \) then
\[
f_n = 3f_{n-3} + 2f_{n-4}, \text{ for all natural numbers } n > 4.
\]

Proof: To verify that the hypothesis is true for at least one value of \(n, \) consider \(n = 5. \)

By definition of Fibonacci sequence:
\[
f_5 = f_4 + f_3 = 3 + 2 = 5
\]
\[
3f_{n-3} + 2f_{n-2} = 3f_2 + 2f_1 = 3(1) + 2(1) = 5
\]

Now consider \(n = 6, \)
\[
f_6 = f_5 + f_4 = 5 + 3 = 8
\]
\[
3f_{n-3} + 2f_{n-2} = 3f_3 + 2f_2 = 3(2) + 2(1) = 8
\]

Now assume that the hypothesis is true from \(n = 5 \) up to some arbitrary value \(k \) so that
\[
f_k = 3f_{k-3} + 2f_{k-4}, \text{ and prove for } k + 1 \text{ by showing } f_{k+1} = 3f_{k-2} + 2f_{k-3}.
\]

For the body of the proof consider the \(k + 1 \) term \(f_{k+1}, \)
\[
f_{k+1} = f_k + f_{k-1} = (3f_{k-3} + 2f_{k-4}) + (3f_{k-4} + 2f_{k-5}) \text{ by the inductive assumption.}
\]
So \(f_{k+1} = (3f_{k-3} + 2f_{k-4}) + (3f_{k-4} + 2f_{k-5}) = 3(f_{k-3} + f_{k-4}) + 2(f_{k-4} + f_{k-5}) = 3f_{k-2} + 2f_{k-3} \)
by definition of the Fibonacci Sequence.
Since we have assumed true up to \(k \) and proved true for \(k+1, \) the hypothesis is true for all \(n > 4. \)

Problem 4: (15pts) Let a set of elements make up a Boolean Algebra \(B \) with operation \(\oplus \) with identity \(k \) and operation \(\odot \) with identity \(p. \) Let the complement of \(a \) be \(\bar{a}. \) Simplify the following expressions and justify your conclusions.

1) \(a \oplus p = p \) by universal bound law

2) \(a \odot \bar{a} = k \) by the inverse (complement law)

3) \(\bar{k} \oplus p = p \oplus p = p \) since identities are complements of each other and the idempotent law

4) \(a \oplus \bar{p} = a \oplus k = a \) by the identity law

5) \((a \odot \bar{p}) \odot a = (a \odot k) \odot a = (k) \odot a = a \)
since identities are complements of each other
by the universal bound law
by the identity law
Problem 5: (12pts) Given the set \(A = \{ \emptyset, \{2\}, 2 \} \), determine if the following statements are true or false. If false, then correct the statement to be true.

a) \(\emptyset \in A \), false, but \(\emptyset \subseteq A \) is true.

b) \(\{\emptyset\} \subseteq P(A) \) true

c) \(\{2\} \in A \) true

d) \(\{\emptyset,\{\emptyset\}\} \subseteq A \) false, but \(\{\{\emptyset\}\} \subseteq A \) is true.

e) \(\{\{\emptyset\}\} \in P(A) \) true

f) \(\{\{2\}\} \subseteq A \) true

Problem 6: (15pt) Use proof by elements to verify that for all nonempty sets \(A, B, \) and \(D \)

Theorem: If \(A \subseteq B, D^c \subseteq B^c \) then \(D^c \subseteq A^c \). (Justify each step of proof)

Proof:

\(\forall x, x \in D^c \rightarrow x \in B^c \) since \(D^c \subseteq B^c \)

\(\rightarrow x \notin B \) by definition of complement

\(\rightarrow x \notin A \) since \(A \subseteq B \)

\(\rightarrow x \in A^c \) by definition of complement

By definition of containment \(D^c \subseteq A^c \)