Math 2534 Solution Homework 4 on Proofs

Be precise on domain used and definitions. The universal quantifier must be clearly implied for valid theorems and the existential quantifier clearly implied for counter-examples. Define your variables clearly and use complete sentences in your write-ups.

Problem 1: Use direct proof using definitions only or give counter-example

Theorem: For all integers, if a is even and b is odd then \(a^2 - 3b \) is odd.

Proof: Given that a is even, then by definition of even there exist an integer k so that \(a = 2k \).
Since b is odd then by definition of odd there exist an integer p so that \(b = 2p + 1 \).
Now consider \(a^2 - 3b = (2k)^2 - 3(2p + 1) = 4k^2 - 6p - 3 = 4k^2 - 6p - 4 + 1 \)
\[= 2(2k^2 - 3p - 2) + 1 = 2m + 1 \quad \text{where} \ m = 2k^2 - 3p - 2 \in \mathbb{Z}. \]
Therefore by definition of odd we have proved that \(a^2 - 3b = 2m + 1 \) is odd.

Problem 2: Use direct proof using definitions only or give counter-example

Theorem: For all natural numbers, If n is odd then n is prime.

Counter-example: Consider the odd natural number \(n = 21 \). The natural number \(n = 21 \) can be divided by 21, 3, 7, 1 and does not satisfy the definition of prime.

Problem 3: Use direct proof using definitions only or give counter-example

Theorem: If a, b and c are natural numbers and \(a \mid b \) and \(a \mid c \) then \(a \mid (3c + b) \)

Proof: Since we are given that a divides b evenly and a divides c evenly, then by definition of divisible there exist integers k and q such that \(ak = b \) and \(aq = c \).
Now consider \(3c + b = 3(aq) + ak = a(3q + k) = am \) where \(m = 3q + k \) is an integer. By definition of divisible we have that a divides \(3c + b \) evenly.