Math 2534 Solutions Homework 4

Instructions: Prove or give a counterexample. Justify all assertions made.

Problem 1: Direct proof:
Theorem: For all natural numbers, if a and b are each prime numbers greater than 2, then a + b is even.
Proof: Given a and b are each prime numbers, we have that a and b are odd since all prime numbers greater than 2 are odd. Therefore we have that a + b are even since we know that the sum of two odd numbers are always odd.

Problem 2: Direct Proof:
Theorem: If a, b and c are natural numbers and \(a | c \) and \(b | d \) then \(ab | cd \)
Proof: Given that \(a | c \) and \(b | d \) we have that \(aq = c \) and \(bk = d \) for integers q and k by definition of divisible. Now consider
\[
aq = c
\]
\[
aqd = cd \quad \text{multiplying through by} \ d
\]
\[
aq(bk) = cd \quad \text{since} \ bk = d
\]
\[
ab(qk) = cd \quad \text{by communtative and associative laws}
\]
\[
ab(m) = cd \quad \text{where} \ m = qk \text{ is an integer}
\]
so \(ab | cd \) by definition of divisible.

Problem 3: Indirect Proof by contrapositive
Theorem: If \(n^3 + 5 \) is odd then n is even for all natural numbers.
Proof by contrapositive: If n is odd then \(n^3 + 5 \) is even
We know that n is odd so \((n)(n) = n^2\) is also odd since the product of two odd numbers is odd. We now have that \(n^3 = n^2n \) is odd by the same theorem. We also have that \(n^3 + 5 \) is even since we know that the sum of two odd numbers is always even. We have proven the contrapositive is true and so the equivalent original statement is also true.

ALTERNATE PROOF by contrapositive.
By definition of odd we have that n = 2p + 1 for integer p. Now consider the following
\[
n^3 + 5 = (2p + 1)^3 + 5 = 8p^3 + 12p^2 + 6p + 6 = 2(4p^3 + 6p^2 + 3p + 3) = 2m
\]
where \(m = 4p^3 + 6p^2 + 3p + 3 \) is an integer
Therefore \(n^3 + 5 \) is even by definition by even. Since the contrapositive is true the equivalent statement is also true.
Problem 4: **Indirect Proof by contradiction**

Theorem: If \(m \) and \(n \) are integers and the product \(mn \) is even then \(m \) is even or \(n \) is even.

Proof by contradiction;

Assume there are some integers \(m \) and \(n \) so that \(mn \) is even and \(m \) is odd and \(n \) is odd.

Assuming that \(m \) and \(n \) are both we will have that \(mn \) is odd since the product of two odd numbers is always odd. BUT this is a contradiction since \(mn \) is given to be even. Therefore \(m \) or \(n \) is even.

(ALTERNATE PROOF would use the definitions of even and odd)

Problem 5: **Prove or disprove.**

Theorem: For all natural numbers, If \(n \) is odd then \(n \) is prime.

Consider \(n = 35 \), It is odd but it is composite and not prime since \(35 = (7)(5) \).