Math 2534 Solution Homework 10 on sets and Boolean Algebra

Show all work.

Problem 1:
Use proof by elements to prove the following:

Theorem: For all sets A, B \(P(A) \cup P(B) \subseteq P(A \cup B) \)

Proof:
\[\forall x, x \in P(A) \cup P(B) \rightarrow x \subseteq A \vee x \subseteq B \quad \text{by definition of powerset and of union} \]
\[\rightarrow x \subseteq (A \cup B) \quad \text{by definition of union} \]
\[\rightarrow x \in P(A \cup B) \quad \text{by definition powerset} \]
therefore \(P(A) \cup P(B) \subseteq P(A \cup B) \) by definition of containment

Problem 2: Use set Algebra to prove the following and justify each step.

a) **Theorem:** For any sets A, B, C such that \((B - A) \cap (C - A) = (B \cup C) - A \)

Proof:
\((B - A) \cap (C - A) = \) given
\((B \cap A^c) \cap (C \cap A^c) = \) by the difference law
\(A^c \cap (B \cup C) = \) by the distributive law
\((B \cup C) \cap A^c = \) by the commutative law
\((B \cup C) - A = \) by the difference law
Therefore \((B - A) \cap (C - A) = (B \cup C) - A \)

b) **Theorem:** For any sets A, B, C, \([A^c \cup (B - A)]^c \cap A = A \)

Proof:
\([A^c \cup (B - A)]^c \cap A = \) given
\([A^c \cup (B \cap A^c)]^c \cap A = \) by the difference law
\(A^c \cap (B \cap A^c)^c \cap A = \) by the DeMorgan's law
\(A \cap (B \cap A^c)^c \cap A = \) by the double complement law
\((A \cap A) \cap (B \cap A^c) = \) by the commutative and associative law
\(A \cap (B \cap A^c) = \) by the idempotent law
\(A \cap (B^c \cup A^c) = \) by DeMorgan's law
\(A \cap (B^c \cup A) = \) by the double complement law
\(A = \) by absorption law
Therefore \([A^c \cup (B - A)]^c \cap A = A \)

Problem 3: Given elements a, b in the Boolean algebra B with operations \(\oplus \) and \(\odot \) where m is the identity for \(\oplus \) and p is the identity for \(\odot \), Justify each step of the proof below. The inverse of any element a is \(a' \).
Theorem: For a, b in B, \((a \boxtimes b) \ominus (b \boxtimes b) = m\)

Proof:
- \((a \boxtimes b) \ominus (b \boxtimes b) = \text{given}\)
- \((a \boxtimes b) \ominus b = \text{indempotent law}\)
- \((a' \odot b') \ominus b = \text{DeMorgan’s law}\)
- \(a' \odot (b' \ominus b) = \text{associative law}\)
- \(a' \odot m = \text{complement law}\)
- \(m = \text{universal bound}\)

Problem 4: Given elements a, b in the Boolean algebra B with operations \(\otimes\) and \(\odot\) where k is the identity for \(\otimes\) and h is the identity for \(\odot\). Let \(\overline{b}\) be the complement of b. Justify each step of the proof below.

Theorem: For a, b in B, \([b \otimes (\overline{b} \odot a)] \odot (\overline{b} \odot a) = \overline{a}\)

Proof:
- \([b \otimes (\overline{b} \odot a)] \odot (\overline{b} \odot a) = \text{given}\)
- \([b \otimes (\overline{b} \odot a)] \odot (\overline{b} \odot a) = \text{DeMorgan’s law and double compliment law}\)
- \([b \otimes (\overline{b} \odot a)] \odot (\overline{b} \odot a) = \text{by the associative law}\)
- \([b \otimes \overline{a}] \odot (\overline{b} \odot a) = \text{by the idempotent law}\)
- \([b \otimes \overline{a}] \odot (\overline{b} \odot a) = \text{by DeMorgan's law}\)
- \((b \otimes \overline{b}) \otimes \overline{a} = \text{by the distributive law}\)
- \(k \otimes \overline{a} = \text{by the complement law}\)
- \(\overline{a} = \text{by the identity law}\)

Therefore \([b \otimes (\overline{b} \odot a)] \odot (\overline{b} \odot a) = \overline{a}\)