Math 2534 Solution Homework 4

Problem 1: Direct proof:
Theorem: For all integers, if a is even and b is odd then $a^2 - 3b$ is odd.
Proof: Given that a is an even integer then we have $a^2 = aa$ is even, since the product of two even numbers is even. Given that 3 is an odd integer and b is an odd integer, we have that the product $3b$ is also odd since the product of two odd integers is always odd. Now we can claim that $a^2 - 3b$ is odd since the difference of an even integer minus an odd integer is odd.

Problem 2: Direct Proof:
Theorem: If a, b and c are natural numbers and $a | b$ and $a | c$ then $a | (b - 2c)$
Proof: Since $a | b$ and $a | c$, and by definition of divisible, we have that $b = ak$ and $c = ap$ for some integers k and p. Now consider $b - 2c = ak - 2(ap) = a(k - 2p) = a(m)$ where $m = k - 2p$ is an integer. Therefore by definition of divisible we have that $a | (b - 2c)$.

Problem 3: Indirect Proof by contrapositive
Theorem: If n^2 is odd then n is odd for all natural numbers.
Proof by contrapositive: Restatement: If n is even then n^2 is even.
Since we are given that n is even, then $n^2 = nn$ is also even because the product of two even integers is always even. We have shown the contrapositive is true, therefore the equivalent original statement is also true and If n^2 is odd then n is odd for all natural numbers.

Problem 4: Indirect Proof by contradiction
Theorem: For all non zero rational numbers, the product of a rational number and an irrational number is always irrational.
Proof by contrapositive: Assume that the product of a rational number and irrational number is rational.
Let r be a rational number so that by definition $r = \frac{a}{b}$ were a and b are non zero integers. Let w be an irrational number so that the sum $r + w$ is rational. We can now represent $r + w = \frac{c}{d}$ for non zero integers c and d. This will give the following calculations where $r + w = \frac{c}{d}$.

\[
\frac{a}{b} = \frac{c}{d} \quad \text{and} \quad w = \left(\frac{c}{d} \right) \left(\frac{b}{a} \right) = \frac{cb}{da}, \quad \text{where da \neq 0}\]

This will give us that w is rational by definition of rational. This contradicts that w is given to be irrational. Therefore the original statement is true and the product is irrational.
Problem 5: Your choice
Theorem: For all natural numbers, if n is odd then n is prime.
Counter Example: let $n = 25$ which is odd but not prime.

Problem 6: Your choice
Theorem: For all natural numbers, if a and b are each prime numbers, then $a + b$ is even.
Counter Example: Let $a = 2$ and $b = 7$, then $2 + 7 = 9$ which is not even.