Problem 1:
Theorem: If a does not divide \(b + c \), then a does not divide b or does not divide c. (Hint: use contrapositive)

Problem 2:
Theorem: For all natural numbers \(n^2 - n \) is even. (Hint: factor)

Problem 3: (use method of contradiction)
Theorem: If \(x \) is a real number and \(x^3 + 4x = 0 \), then \(x = 0 \).

Problem 4: (use method of contradiction)
Theorem: The quotient of a non zero rational number divided by an irrational number is always irrational.

Problem 5:
Theorem: The product of any 3 consecutive integers is always divisible by 3.

Problem 6: If \(a \mod 5 = 2 \), then find the value of \((8a) \mod 5 \).

Problem 7: Given the following puzzle where \(a, b \) and \(c \) are integers and \(a^2 + b \) is odd and \(a - c \) is even with \(c \) odd. Then determine if \(b + c \) is odd or even. Next formulate a theorem concerning your results and prove it.