Curves and positroids in the Grassmannian

Leonardo Mihalcea
Department of Mathematics
Baylor University
joint work with A. Buch, P.E. Chaput, N. Perrin

June 15, 2010
Gromov-Witten varieties

- $X = \text{Gr}(p, m)$ - transitive action of $\text{GL}_m(\mathbb{C})$ acts transitively on X. Take B^+, B^- the upper/lower triangular matrices in $\text{GL}_m(\mathbb{C})$.
- Closures of B^+-orbits \leftrightarrow Schubert varieties Ω_λ
- Closures of B^--orbits \leftrightarrow opposite Schubert varieties Ω_{μ}^{opp}.
- Fix $d \geq 0$. $\overline{\mathcal{M}}_{0,3}(X, d)$ compactifies the space of maps $f : (\mathbb{P}^1, pt_1, pt_2, pt_3) \to X$ such that $f_*[\mathbb{P}^1] = d[\text{line}]$.
- evaluation maps: $\text{ev}_i : \overline{\mathcal{M}}_{0,3}(X, d) \to X$ given by $\text{ev}_i(f) = f(pt_i)$.
Gromov-Witten varieties

Definition: Gromov-Witten variety

\[GW_d(\lambda, \mu) = ev_1^{-1} \Omega_\lambda \cap ev_2^{-1} \Omega_\mu \]

Theorem (BCMP)

\(GW_d(\lambda, \mu) \) is either empty or it is irreducible and unirational, with rational singularities. (This holds for any \(G/P \).)

Y is **unirational**: \(\exists F : \mathbb{P}^N \rightarrow Y \) dominant.

Y has **rational singularities** if \(\exists \) desingularization \(F : Z \rightarrow Y \) so that \(F_* \mathcal{O}_Z = \mathcal{O}_Y \) and \(R^i F_* \mathcal{O}_Z = 0, i > 0. \)

Definition.

\[\Gamma_d(\lambda, \mu) = ev_3(GW_d(\lambda, \mu)) \]

- This is a subvariety of the Grassmannian;
- It is the union of all rational curves of degree \(d \) joining \(\Omega_\lambda \) and \(\Omega_\mu^{opp} \).
\[\Gamma_d(\lambda, \emptyset) \] is the union of all rational curves of degree \(d \) passing through \(\Omega_\lambda \).

Proposition. [Carrell-Peterson, Fulton-Woodward] \(\Gamma_d(\lambda, \emptyset) = \Omega_\lambda[-d] \)
Proposition. [Carrell-Peterson, Fulton-Woodward] \(\Gamma_d(\lambda, \emptyset) = \Omega_{\lambda[-d]} \)

\(\Gamma_d(\lambda, \emptyset) \) is the union of all rational curves of degree \(d \) passing through \(\Omega_{\lambda} \).

\(\lambda[-1] \)
Proposition. [Carrell-Peterson, Fulton-Woodward] $\Gamma_d(\lambda, \emptyset) = \Omega_{\lambda[-d]}$

$\Gamma_d(\lambda, \emptyset)$ is the union of all rational curves of degree d passing through Ω_{λ}.

$\lambda[-2]$
Definition. [Lusztig, Rietsch, Knutson-Lam-Speyer] Let R be a Richardson variety in the full flag manifold $Fl(n)$. A **positroid** is a projection $\pi(R)$, where $\pi : Fl(m) \to Gr(p, m)$ is the projection.

Theorem. [Knutson-Lam-Speyer] Positroid varieties are normal and have rational singularities.
Gromov-Witten positroids

\[\{ K^{p-d} \subset V \subset S^{p+d} \} \xrightarrow{\pi_1} \text{Gr}(p, m) = \{ V \} \]
\[\downarrow \pi_2 \]
\[Y = \{ K^{p-d} \subset S^{p+d} \subset \mathbb{C}^m \} \]

\[\Omega_\lambda \subset \text{Gr}(p, m) - \text{Schubert variety} \]
\[Y_\lambda = \pi_2(\pi_1^{-1}\Omega_\lambda) \]

\[R_d(\lambda, \mu) = \pi_2^{-1}(Y_\lambda \cap Y_\mu^{opp}) \subset \text{Fl}(p - d, p, p + d; m) \]

\(R_d(\lambda, \mu) \) is a Richardson variety and \(\pi_1(R_d(\lambda, \mu)) \) is a GW positroid.
Gromov-Witten positroids

\[
\{K^{p-d} \subset V \subset S^{p+d}\} \xrightarrow{\pi_1} \text{Gr}(p, m) = \{V\} \\
\downarrow \pi_2 \\
Y = \{K^{p-d} \subset S^{p+d} \subset \mathbb{C}^m\}
\]

\[\Omega_\lambda \subset \text{Gr}(p, m) - \text{Schubert variety}\]

\[Y_\lambda = \pi_2(\pi_1^{-1}\Omega_\lambda)\]

\[R_d(\lambda, \mu) = \pi_2^{-1}(Y_\lambda \cap Y_\mu^{\text{opp}}) \subset \text{Fl}(p - d, p, p + d; m).\]

\(R_d(\lambda, \mu)\) is a Richardson variety and \(\pi_1(R_d(\lambda, \mu))\) is a GW positroid.

Condition DIM. Say \(\pi_1(R_d(\lambda, \mu))\) satisfies condition DIM if

\[\dim R_d(\lambda, \mu) = \dim \pi_1(R_d(\lambda, \mu)).\]
Definition of small quantum cohomology

\[\text{Gr}(p, m) = \{ V \subset \mathbb{C}^m : \dim V = p \} \] - Grassmannian of \(p \)-planes in \(\mathbb{C}^m \).

- \(\text{QH}^*(\text{Gr}(p, m)) \) is a graded \(\mathbb{Z}[q] \)-algebra, where \(\deg q = m \).
- \(\text{QH}^*(X) \) has a \(\mathbb{Z}[q] \)-basis \(\{ [\Omega_\lambda] \} \) - the Schubert classes.

Multiplication:

\[
[\Omega_\lambda] \ast [\Omega_\mu] = \sum_{d \geq 0} \sum_{\nu} q^d \langle \Omega_\lambda, \Omega_\mu, \Omega_\nu^\vee \rangle_d [\Omega_\nu].
\]

- \(\langle \Omega_\lambda, \Omega_\mu, \Omega_\nu^\vee \rangle_d \) is the 3 point, genus 0 GW invariant.
- \(\langle \Omega_\lambda, \Omega_\mu, \Omega_\nu^\vee \rangle_d \) equals the number of rational curves in \(X \), passing through translates of Schubert varieties \(\Omega_\lambda, \Omega_\mu \) and \(\Omega_\nu^\vee \).
Theorem. [Buch-Kresch-Tamvakis, Postnikov, Knutson-Lam-Speyer] Assume condition DIM holds. Then:

1. $\Gamma_d(\lambda) = \pi_1(R_d(\lambda, \mu))$ so it is a positroid GW variety.
2. The class of $\Gamma_d(\lambda, \mu) \in H^*(\text{Gr}(p, m))$ is

$$[\Gamma_d(\lambda, \mu)] = \sum \langle [\Omega_\lambda], [\Omega_\mu], [\Omega_\nu]^\vee \rangle_d [\Omega_\nu]$$

Moreover, condition DIM holds \iff q^d appears in $[\Omega_\lambda] \ast [\Omega_\mu] \iff \mu^\vee / d / \lambda$ is toric.
K-theory class of GW positroids

Theorem (B-C-M-P)

1. $\Gamma_d(\lambda, \mu) = \pi_1(R_d(\lambda, \mu))$ is always a positroid GW variety.
2. The K-theory class of $\Gamma_d(\lambda, \mu)$ is given in terms of K-theoretic GW invariants:

$$[\mathcal{O}_{\Gamma_d(\lambda, \mu)}] = \sum \langle [\mathcal{O}_{\Omega_{\lambda}}], [\mathcal{O}_{\Omega_{\mu}}], [\mathcal{O}_{\Omega_{\nu}}]^\vee \rangle_d [\mathcal{O}_{\Omega_{\nu}}]$$

Example. $X = \text{Gr}(2, 4), d = 1, \lambda = \mu = (2)$. It is known that $[\Omega_{(2)}] * [\Omega_{(2)}] = [\mathcal{O}_{(2,2)}]$. No q^1 power, so DIM does not hold!
K-theory class of GW positroids

Theorem (B-C-M-P)

1. $\Gamma_d(\lambda, \mu) = \pi_1(R_d(\lambda, \mu))$ is always a positroid GW variety.
2. The K-theory class of $\Gamma_d(\lambda, \mu)$ is given in terms of K-theoretic GW invariants:

$$[O_{\Gamma_d(\lambda, \mu)}] = \sum \langle [O_{\Omega_{\lambda}}], [O_{\Omega_{\mu}}], [O_{\Omega_{\nu}}]^\vee \rangle_d [O_{\Omega_{\nu}}]$$

Example. $X = \text{Gr}(2, 4), d = 1, \lambda = \mu = (2)$. It is known that $[\Omega_{(2)}] * [\Omega_{(2)}] = [O_{(2, 2)}]$. No q^1 power, so DIM does not hold!

$$\Gamma_1((2), (2)) = \Gamma_1(pt, \emptyset) = \Omega_{(1)}$$

This implies:

- $\langle [O_{(2)}], [O_{(2)}], [O_{\nu}]^\vee \rangle_1 = 0$ if $\nu \neq (1)$;
- $\langle [O_{(2)}], [O_{(2)}], [O_{(1)}]^\vee \rangle_1 = 1$.
Rational neighborhoods of GW positroids

In the study of $QK(\text{Gr}(p, m))$ the following variety arises naturally:

$$\Gamma_{d_1}(\lambda, \mu) \subset \Gamma_{d_1,d_2}(\lambda, \mu) \subset \text{Gr}(p, m)$$

the union of all rational curves of degree d_2 passing through $\Gamma_{d_1}(\lambda, \mu)$.
In the study of $QK(\text{Gr}(p, m))$ the following variety arises naturally:

$$
\Gamma_{d_1}(\lambda, \mu) \subset \Gamma_{d_1,d_2}(\lambda, \mu) \subset \text{Gr}(p, m)
$$

the union of all rational curves of degree d_2 passing through $\Gamma_{d_1}(\lambda, \mu)$.

Example. $\Gamma_{0,1}(\lambda, \mu) = \text{union of lines through } \Omega_\lambda \cap \Omega_{\mu}^{opp}$.
Open questions

1. Find geometric properties for $\Gamma_{d_1,d_2}(\lambda, \mu)$. Given a conjectural formula for K-class of $\Gamma_{d_1,d_2}(\lambda, \mu)$ we expect that this variety is normal and it has rational singularities.

2. Examples show:

$$\text{GW positroids } \subsetneq \{ \text{positroids} \}$$

$$\{ \text{positroids} \} \text{ almost equal } \{ \Gamma_{d_1,d_2}(\lambda, \mu) \}$$

Is there a general statement?

3. Other homogeneous spaces G/P? Any connections to Lusztig stratification?
Thank you!