Homework 9, Math 5126, due Monday, April 10, at the beginning of class. *Starred problems must be done without peer discussion.*

1.) (Page 668, no. 6) Suppose that $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ is an exact sequence of R-modules. Prove that M is a Noetherian R-module if and only if M' and M'' are Noetherian R-modules.

2.) (Page 668, no. 7) Prove that submodules, quotient modules, and finite direct sums of Noetherian R-modules are again Noetherian R-modules.

*3.) (Page 668, no. 8) If R is a Noetherian ring, prove that M is a Noetherian R-module if and only if M is a finitely generated R-module. (Thus any submodule of a finitely generated module over a Noetherian ring is also finitely generated).

4.) Let A be a subring of the ring B with unity 1 such that $1 \in A$. Assume that the set $B \setminus A$ is closed under multiplication. Show that A is integrally closed in B.

5.) (Page 703, no. 5) Let R be an integral domain with field of fractions F. Show that F is a finitely generated R-module if and only if $R = F$.

*6.) (Page 704, no. 11) Suppose R is an integrally closed integral domain with field of fractions k and $p(x) \in R[x]$ is a monic polynomial. Show that if $p(x) = a(x)b(x)$ with monic polynomials $a(x), b(x) \in k[x]$ then $a(x), b(x) \in R[x]$. (Hint: Explain why the roots of both $a(x)$ and $b(x)$ are integral over R. Then use this fact to show that the coefficients of $a(x)$ and $b(x)$ are both integral over R.)