Homework 6, Math 5125, due Monday, October 17, at the beginning of class.

Starred problems must be done without peer discussion.

1.) (Page 147, no. 15) Prove that a group of order 351 has a normal Sylow p-subgroup for some p dividing its order.

2.) (Page 147, no. 16) Let $|G| = pqr$ where p, q, and r are primes with $p < q < r$. Prove that G has a normal Sylow subgroup for either p, q, or r.

*3.) (Page 147, no. 22) Prove that if $|G| = 132$ then G is not simple.

4.) (Page 147, no. 24) Prove that if G is a group of order 231 then $Z(G)$ contains a Sylow 11-subgroup of G and a Sylow 7 subgroup is normal in G.

*5.) (Page 147, no. 26) Let G be a group of order 105. Prove that if a Sylow 3 subgroup of G is normal then G is abelian.

6.) (Page 147, no. 32) Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If P is normal in H and H is normal in K, prove that P is normal in K. Deduce that if P is a Sylow p subgroup of G and $H = N_G(P)$, then $N_G(H) = H$.

*7.) (Page 148, no. 50) Prove that if U and W are normal subsets of a Sylow p subgroup P of G then U is conjugate to W in G if and only if U is conjugate to W in $N_G(P)$. Deduce that two elements in the center of P are conjugate in G if and only if they are conjugate in $N_G(P)$. (A subset U of P is normal in P if $N_P(U) = P$.)

8.) (Page 166, no. 7) Let p be a prime and let $A = \langle x_1 \rangle \times \langle x_2 \rangle \times \cdots \times \langle x_n \rangle$ be an abelian p group where the order of x_i equals p^{α_i} for some $\alpha_i \geq 1$ for all i. Define the p^{th} power map

$$\varphi : A \to A \text{ by } \varphi : x \to x^p$$

(a) Prove that φ is a homomorphism.

(b) Describe the image and kernel of φ in terms of the given generators.

(c) Prove both $\ker \varphi$ and $A / \text{im } \varphi$ have rank n and prove that these groups are both isomorphic to the elementary abelian group E_{p^n} of order p^n.