Homework 5, Math 5125, due Monday, September 26, at the beginning of class.
Starred problems must be done without peer discussion.

1) (Page 122, no. 6) Let r and s be the usual generators for the dihedral group of order 8 and let $N = \langle r^2 \rangle$. List the left cosets of N in D_8 as $1N$, rN, sN, and srN. Label these cosets with the integers 1, 2, 3, 4 respectively. Exhibit the image of each element of D_8 under the representation π_N of D_8 into S_4 obtained from the action of D_8 by left multiplication on the set of 4 left cosets of N in D_8. Deduce that this representation is not faithful and prove that $\pi_N(D_8)$ is isomorphic to the Klein 4-group.

*2) (Page 122, no. 7) Let Q_8 be the quaternion group of order 8.
(a) Prove that Q_8 is isomorphic to a subgroup of S_8.
(b) Prove that Q_8 is not isomorphic to a subgroup of S_n for any $n \leq 7$. (Hint: If Q_8 acts on any set A of order ≤ 7 show that the stabilizer of any point $a \in A$ must contain the subgroup $< -1 >$.)

3) (Page 131, no. 19 and 20)
(a) Assume H is a normal subgroup of G, \mathcal{K} is a conjugacy class of G contained in H and $x \in \mathcal{K}$. Prove that \mathcal{K} is a union of k conjugacy classes of equal size in H, where $k = |G : H C_G(x)|$. Deduce that a conjugacy class in S_n which consists of even permutations is either a single conjugacy class under the action of A_n or is a union of two classes of the same size in A_n.
(b) Let $\sigma \in A_n$. Show that all elements in the conjugacy class of σ in S_n are conjugate in A_n if and only if σ commutes with an odd permutation.

4) (Page 132, no. 34 and Page 138, no. 11) Let p be a prime and let P be a subgroup of S_p of order p.
(a) Prove $|N_{S_p}(P)| = p(p - 1)$.
(b) Prove $N_{S_p}(P)/C_{S_p}(P) \cong \text{Aut}(P)$.

*5) (Page 138, no. 12) Let G be a group of order 3825. Prove that if H is a normal subgroup of order 17 in G then H is a subgroup of $Z(G)$.