1. Given a ring R, define $R(z)$ to be the set of all formal sums $a + bz$, $a, b \in R$, where $z^2 = 0$, $az = za$ for all $a \in R$, and $a + bz = c + dz$ if and only if $a = c$ and $b = d$.
(a) If A is an ideal of the ring R, show that $A(z) = \{c + dz | c, d \in A\}$ is an ideal of $R(z)$ and
\[\frac{R(z)}{A(z)} \cong \frac{R}{A}(z). \]
(b) If R is a division ring, show that $R(z)$ has exactly three ideals.
(c) Show that
\[R(z) \cong \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in R \right\}. \]

2.) (Page 582, no. 8) Suppose K is a Galois extension of F of degree p^n for some prime p and some $n \geq 1$. Show there are Galois extensions of F contained in K of degrees p and p^{n-1}.

*3.) (Page 596, no. 5) Let p be a prime and let F be a field. Let K be a Galois extension of F whose Galois group is a p-group (i.e. the degree $[K : F]$ is a power of p). Such an extension is called a p-extension (note that p-extensions are Galois by definition).
(a) Let L be a p-extension of K. Prove that the Galois closure of L over F is a p-extension of F.
(b) Give an example to show that (a) need not hold if $[K : F]$ is a power of p but K/F is not Galois.

4.) (Page 618, no. 14) Prove the polynomial $x^4 + px^2 + q \in \mathbb{Q}[x]$ is irreducible for any distinct odd primes p and q and has Galois group the dihedral group of order 8.

*5.) (Page 618. no. 15) Prove the polynomial $x^4 + px + p \in \mathbb{Q}[x]$ is irreducible for every prime p and for $p \neq 3, 5$ has Galois group S_4. Prove the Galois group for $p = 3$ is dihedral of order 8 and for $p = 5$ is cyclic of order 4.