Homework 3, Math 5125, due Monday, September 12, at the beginning of class.
Starred problems must be done without peer discussion.

1) (a) Let G be a group and let N be a normal subgroup of G. Prove that G/N is abelian if and only if $[G,G]$ is a subgroup of N.
(b) (part of Theorem 8 page 196) Let G be group. Prove if $G^n = 1$ then G is nilpotent.
(Hint: Prove that if $G^n = 1$ then $G^{n-i} \subseteq Z_i(G)$ for $0 \leq i \leq n$.)

2) (a) Prove that $Z(D_{2n})$ is nontrivial if and only if n is even.
(b) Use part (a) to prove: D_{2n} is nilpotent if and only if n is a power of 2.

*3) (Page 198, no. 7) Prove that subgroups and quotient groups of nilpotent groups are nilpotent (your proof should work for infinite groups). Given an explicit example of a group G which possesses a normal subgroup H such that both H and G/H are nilpotent but G is not nilpotent.

*4) (a) Let G be a nilpotent group. Prove: Every nonidentity normal subgroup of G intersects nontrivially with $Z(G)$.
(b) Let G be a finite group. Prove: G is nilpotent if and only if $Z(G/K)$ is nontrivial for all proper normal subgroups K of G.

5) a) Let G be a finite group and let M be a maximal subgroup of G. (That means that $M \neq G$ but there are no subgroups of G properly between M and G.) Prove that $Z(G) \subseteq M$ or $[G,G] \subseteq M$.
(b) Let G be a nilpotent group and let M be a maximal subgroup of G. Prove that M is normal in G.
