Homework 2. Math 5125, due Monday, September 5, at the beginning of class.
Starred problems must be done without peer discussion.

1) Let \(n \geq 3. \)
 (i) Prove that the alternating group \(A_n \) is generated by the set of 3-cycles.
 (ii) Prove: If \(N \) is a proper normal subgroup of \(S_n \) and \(N \) contains a 3-cycle then \(N = A_n. \)

2.) (Page 101 no. 9) Let \(p \) be a prime and let \(G \) be a group of order \(p^a m \) where \(p \) does not divide \(m. \) Assume \(P \) is a subgroup of \(G \) of order \(p^a \) and \(N \) is a normal subgroup of \(G \) of order \(p^b n, \) where \(p \) does not divide \(n. \) Prove that \(|P \cap N| = p^b \) and \(|PN/N| = p^{a-b}. \)
 (Do not use Sylow’s theorem in your proof.)

3) (Page 106 no. 5) Prove that subgroups and quotient groups of a solvable group are solvable.

4) (Page 106 no. 8) Let \(G \) be a finite group. Prove that the following are equivalent.
 (i) \(G \) is solvable
 (ii) \(G \) has a chain of subgroups

\[
1 = H_0 \leq H_1 \leq H_2 \leq \cdots \leq H_s = G
\]

such that each \(H_i \) is normal in \(H_{i+1} \) and \(H_{i+1}/H_i \) is cyclic, \(0 \leq i \leq s - 1 \)

(iii) all composition factors of \(G \) are of prime order

(iv) \(G \) has a chain of subgroups:

\[
1 = N_0 \leq N_1 \leq N_2 \leq \cdots N_t = G
\]

such that each \(N_i \) is a normal subgroup of \(G \) and \(N_{i+1}/N_i \) is abelian for \(0 \leq i \leq t - 1. \)

5.) Let \(G \) be a group, \(B \) be a subgroup of \(G, \) and \(N \) be a normal subgroup of \(G. \)
 Prove: If both \(B \) and \(N \) are solvable then \(BN \) is solvable.