Homework 10, Math 5125, due Monday, November 14, at the beginning of class. *Starred problems must be done without peer discussion.*

1.) (Page 311, no. 8) Prove that $K_1 = \mathbb{F}_{11}[x]/(x^2 + 1)$ and $K_2 = \mathbb{F}_{11}[y]/(y^2 + 2y + 2)$ are fields with 121 elements. Prove that the map which sends $p(\bar{x})$ of K_1 to the element $p(\bar{y} + 1)$ of K_2 is well defined and gives a ring (hence field) isomorphism from K_1 to K_2.

2.) (Page 530, no. 7) Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Conclude that $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4$. Find an irreducible polynomial satisfied by $\sqrt{2} + \sqrt{3}$.

3.) (Page 530, no. 8) Let F be a field of characteristic not equal to 2. Let D_1 and D_2 be elements of F, neither of which is a square in F. Prove that $F(\sqrt{D_1}, \sqrt{D_2})$ is of degree 4 over F if $D_1 D_2$ is not a square in F and is of degree 2 over F otherwise. (When $F(\sqrt{D_1}, \sqrt{D_2})$ is of degree 4 over F the field is called a biquadratic extension of F.)

*4.) (Page 530, no. 9) Let F be a field of characteristic not equal to 2. Let a, b be elements of the field F with b not a square in F. Prove that a necessary and sufficient condition for $\sqrt{a} + \sqrt{b} = \sqrt{m} + \sqrt{n}$ for some m and n in F is that $a^2 - b$ is a square in F. Use this to determine when the field $\mathbb{Q}(\sqrt{a} + \sqrt{b})(a, b \in \mathbb{Q})$ is biquadratic over \mathbb{Q}.

5.) (Page 530, no. 13) Suppose that $F = \mathbb{Q}(\alpha_1, \alpha_2, \ldots, \alpha_n)$ where $\alpha_i^2 \in \mathbb{Q}$ for $i = 1, 2, \ldots, n$. Prove that the cube root of 2 is not in F.

* 6.) (Page 530, no. 14) Prove that if $[F(\alpha) : F]$ is odd then $F(\alpha) = F(\alpha^2)$.