Section 4.2: The Division Algorithm and Greatest Common Divisors

The Division Algorithm

The Division Algorithm is merely long division restated as an equation. For example, the division

\[
\begin{array}{c|c}
32 & r, 20 \\
\hline
32 & 948 \\
\end{array}
\]

can be rewritten in equation form as \(948 = 32(29) + 20 \).

More generally, if \(m \) (the dividend) and \(d \) (the divisor) are positive integers then division of \(m \) by \(d \) yields quotient \(q \) and remainder \(r \) as follows:

\[
\begin{array}{c|c}
q & \text{rem} r \\
\hline
\text{d} & m \\
\end{array}
\]

Furthermore, we know that \(0 \leq r < d \).

We can express (**) in equation form as:

\[
m = dq + r \quad \text{where} \quad 0 \leq r < d.
\]

Theorem 1 (The Division Algorithm for Integers): Let \(m \) be any integer and let \(d \) be a positive integer. Then there exist unique integers \(q \) and \(r \) such that \(0 \leq r < d \) and \(m = dq + r \).

Comment: Note that in the Division Algorithm, \(m \), the dividend, is an arbitrary integer. From long division, we are familiar only with the case where \(m \geq d \). The other cases are easily handled as follows.

Case 1: Assume \(0 \leq m < d \). Then set \(q = 0 \) and \(r = m \); that is, \(m = d(0) + m \).

Case 2: Assume the dividend is \(-m \), where \(m \) is positive. Since \(m \) is positive, we can use long division to find integers \(q \) and \(r \) such that \(m = dq + r \). Then \(-m = d(-q) - r = d(-q - 1) + (d - r) \). Since \(0 \leq r < d \), it follows that \(0 \leq d - r < d \).

Exercise 1: In each of (a) – (d) you are given values for \(m \) and \(d \). In each case find (using the notation of the Division Algorithm) the quotient \(q \) and the remainder \(r \).

(a) \(m = 6, d = 10 \) \quad (b) \(m = -6, d = 10 \)

(c) \(m = 15153, d = 83 \) \quad (d) \(m = -15153, d = 83 \)
Greatest Common Divisors

Definition 1: Let a and b be integers. A positive integer d is called the greatest common divisor of a and b, written $d = \gcd(a, b)$, provided:

(a) d divides a and d divides b; and

(b) if c is an integer such that c divides a and c divides b, then c divides d.

Comment: In words, the definition states that $d = \gcd(a, b)$ provided d is a common divisor of a and b and d is divisible by all other common divisors of a and b.

Example 1: The common divisors of 18 and 30 are ± 1, ± 2, ± 3, and ± 6. Clearly, $6 = \gcd(18, 30)$ and note that all other common divisors of 18 and 30 divide 6.

Uniqueness of the GCD

Lemma 1: Let d_1 and d_2 be positive integers such that d_1 divides d_2 and d_2 divides d_1. Then $d_1 = d_2$.

Proof: Let d_1 and d_2 be positive integers such that d_1 divides d_2 and d_2 divides d_1. Then there exist positive integers q_1 and q_2 such that $d_1 = q_1d_2$ and $d_2 = q_2d_1$. Thus,

$$d_1 = q_1d_2 = q_1(q_2d_1) = (q_1q_2)d_1.$$

Since $d_1 = (q_1q_2)d_1$, it follows that $1 = q_1q_2$. Recall that q_1 and q_2 are both positive, so it follows that $q_1 = q_2 = 1$. (The only other possibility, $q_1 = q_2 = -1$, is eliminated.) Thus, $d_1 = q_1d_2 = d_2$.

Theorem 2: Let a and b be integers. If $\gcd(a, b)$ exists, it is unique.

Proof: Let a and b be integers and assume that $\gcd(a, b)$ exists. Suppose that $d_1 = \gcd(a, b)$ and suppose also that $d_2 = \gcd(a, b)$. Let’s first view d_1 as $\gcd(a, b)$. Since d_2 is, by (a) of Definition 1, a common divisor of a and b, it follows from (b) of Definition 1 that d_2 divides d_1. Similarly, viewing d_2 as $\gcd(a, b)$, we see that d_1 divides d_2. It now follows from Lemma 1 that $d_1 = d_2$, so $\gcd(a, b)$ is unique when it exists.
Existence of the GCD

Special Cases: Let a and b be integers.

- $\gcd(0, 0)$ does not exist.
- If $a \neq 0$ then $\gcd(a, 0) = |a|$.
- If a divides b then $\gcd(a, b) = |a|$.
- If $a \neq 0$ and $b \neq 0$ then $\gcd(a, b) = \gcd(|a|, |b|)$.

Thus, in the algorithm given as the proof of Theorem 3 below, we may always assume that a and b are positive integers.

The next Lemma gives an essential “reduction step” for calculating $\gcd(a, b)$.

Lemma 2: Let $a, b, q,$ and r be integers such that $a = qb + r$. (cf. The Division Algorithm) Then $\gcd(a, b) = \gcd(b, r)$.

Proof: The proof of Lemma 2 is Exercise 4.2.3.

Theorem 3: If a and b are integers, not both zero, then $\gcd(a, b)$ exists.

Proof: The special cases were considered above. We give here an algorithm for finding $\gcd(a, b)$ when $a \geq b > 0$.

Apply the Division Algorithm, with b as the divisor, to obtain

$$a = q_1 b + r_1 \text{ where } 0 \leq r_1 < b.$$

If $r_1 \neq 0$, apply the Division Algorithm to b and r_1, with r_1 as the divisor, to obtain

$$b = q_2 r_1 + r_2 \text{ where } 0 \leq r_2 < r_1.$$

If $r_2 \neq 0$, apply the Division Algorithm to r_1 and r_2, with r_2 as the divisor, to obtain

$$r_1 = q_3 r_2 + r_3 \text{ where } 0 \leq r_2 < r_1.$$

Since the remainders r_1, r_2, r_3, etc. form a sequence of positive integers with $r_1 > r_2 > r_3 \cdots \geq 0$. It follows that there is an integer k such that $r_k \neq 0$ but $r_{k+1} = 0$.

Following is the algorithm for calculating $\gcd(a, b)$:
Algorithm 1: Finding the GCD:

\[a = q_1 b + r_1 \text{ where } 0 \leq r_1 < b \]
\[b = q_2 r_1 + r_2 \text{ where } 0 \leq r_2 < r_1 \]
\[r_1 = q_3 r_2 + r_3 \text{ where } 0 \leq r_3 < r_1 \]
\[\vdots \]
\[r_{k-3} = q_{k-1} r_{k-2} + r_{k-1} \text{ where } 0 \leq r_{k-1} < r_{k-2} \]
\[r_{k-2} = q_k r_{k-1} + r_k \text{ where } 0 \leq r_k < r_{k-1} \]
\[r_{k-1} = q_{k+1} r_k \]

Then \(r_k = \gcd(a, b) \).

To see that \(r_k = \gcd(a, b) \), repeatedly apply Lemma 2 to get
\[\gcd(a, b) = \gcd(b, r_1) = \gcd(r_1, r_2) = \cdots = \gcd(r_{k-1}, r_k). \]
But, by the last equation in Algorithm 1, \(r_k \) divides \(r_{k-1} \). Thus, \(r_k = \gcd(r_{k-1}, r_k) = \gcd(a, b) \).

Example 2: Find \(\gcd(216, 80) \).

Solution: Repeated use of long division gives:

\[
\begin{array}{cccccc}
2 & r & 56 & 1 & r & 24 \\
80 | 216 & 56 | 80 & 24 | 56 & 8 | 24 \\
56 & 80 & 24 & 56 & 8 & 24
\end{array}
\]

or, in equation form:

\[
216 = (2)80 + 56 \quad 80 = (1)56 + 24 \quad 56 = (2)24 + 8 \quad 24 = (3)8.
\]

Therefore, \(8 = \gcd(216, 80) \).

Exercise 2: In each of (a) – (d), find \(\gcd(a, b) \).

(a) \(a = -44, b = 0 \) \quad (b) \(a = -22, b = 660 \)
(c) \(a = 715, b = 208 \) \quad (d) \(a = 715, b = -208 \)

Further Theorems

Theorem 4: Let \(a \) and \(b \) be integers and suppose \(d = \gcd(a, b) \). Then there exist integers \(m \) and \(n \) such that \(d = ma + nb \).

Comment: Note that \(6 = \gcd(18, 30) \) and we may write
\[
6 = (2)18 + (-1)30 = (-3)18 + (2)30 = (7)18 + (-4)30,
\]
so, in the notation of Theorem 4, \(m \) and \(n \) are not unique.
The following algorithm for finding one choice for \(m \) and \(n \) is a continuation of Algorithm 1 for find \(\gcd(a, b) \).

Algorithm 2: Writing \(\gcd(a, b) = ma + nb \)

Beginning with the second to last equation of Algorithm 1 and working up, we solve each equation for the remainder. This gives:

\[
\begin{align*}
 r_k &= r_{k-2} - q_k r_{k-1} \\
 r_{k-1} &= r_{k-3} - q_{k-1} r_{k-2} \\
 & \vdots \\
 r_3 &= r_1 - q_3 r_2 \\
 r_2 &= b - q_2 r_1 \\
 r_1 &= a - q_1 b
\end{align*}
\]

Recall that \(r_k = \gcd(a, b) \).

In the equation for \(r_k \), substitute for \(r_{k-1} \), using the second equation. This gives

\[
\begin{align*}
 r_k &= r_{k-2} - q_k r_{k-1} \\
 &= r_{k-2} - q_k (r_{k-3} - q_{k-1} r_{k-2}) \\
 &= (1 + q_{k-1}) r_{k-2} + (-q_k) r_{k-3}.
\end{align*}
\]

In the resulting equation, we next substitute for \(r_{k-2} \) and simplify. Then substitute for \(r_{k-3} \) and simplify. Continuing, we eventually substitute for \(r_1 \) and simplify. This will yield \(r_k = ma + nb \).

Example 3: We have seen in Example 2 that \(8 = \gcd(216, 80) \). Find integers \(m \) and \(n \) such that \(8 = 216m + 80n \).

Solution: In the solution to Example 3 we obtained several equations representing the repeated applications of the Division Algorithm. In reverse order, we solve each those equations for the remainder. This gives:

\[
8 = 56 - (2)24 \quad 24 = 80 - (1)56 \quad 56 = 216 - (2)80.
\]

Now in \(8 = 56 - (2)24 \) substitute \(24 = 80 - (1)56 \) to obtain

\[
8 = 56 - 2(80 - (1)56) = (-2)80 + (3)56.
\]

Next, substitute \(56 = 216 - (2)80 \) to obtain:

\[
8 = (-2)80 + (3)56 = (-2)80 + 3(216 - (2)80) = (3)216 - (8)80.
\]

Thus, \(8 = (3)216 - (8)80 \).
Exercise 3: Find $d = \gcd(4977, 405)$ and find integers m and n such that $d = 4977m + 405n$.

Theorem 5: Let a, and b be integers, where a and b are not both zero. Then $\gcd(a, b)$ exists so let $d = \gcd(a, b)$. For an integer c there exist integers m and n such that $c = ma + nb$ if and only if c is a multiple of d.

Proof: Note that this is an equivalence, so two proofs are required.

First, let c be an integer and assume that there exist integers m and n such that $c = ma + nb$. Let $d = \gcd(a, b)$. Then d divides both a and b, so there exist integers a_1 and b_1 such that $a = a_1d$ and $b = b_1d$. Thus, $c = ma + nb = ma_1d + nb_1d = (ma_1 + nb_1)d$. Consequently, $c = qd$, where $q = ma_1 + nb_1$, and so d divides c.

In the opposite direction, set $d = \gcd(a, b)$, let c be an integer, and assume that d divides c. Then there exists an integer k such that $c = kd$. By Theorem 4, there exist integers m_1 and n_1 such that $d = m_1a + n_1b$. Therefore, $c = kd = k(m_1a + n_1b) = km_1a + kn_1b$. Thus, $c = ma + nb$, where $m = km_1$ and $n = kn_1$.

Exercise 4: Suppose $11 = ma + nb$, where a, b, m, and n are integers. List all possible choices for $d = \gcd(a, b)$.
Section 4.2. EXERCISES

4.2.1. In each of (a) – (e) you are given integers \(m \) and \(n \), where \(n \) is positive. In each case, find integers \(q \) and \(r \) such that \(m = qn + r \) and \(0 \leq r < n \).

(a) \(m = 2, n = 5 \)
(b) \(m = -2, n = 5 \)
(c) \(m = 30, n = 6 \)
(d) \(m = 4129, n = 232 \)
(e) \(m = -4129, n = 232 \).

4.2.2. In each of (a) – (c) below you are given integers \(a \) and \(b \). In each case use the Division Algorithm to find \(\text{gcd}(a, b) \) and to find integers \(m \) and \(n \) such that \(\text{gcd}(a, b) = ma + nb \)

(a) \(a = 899, b = 29 \)
(b) \(a = 224, b = 98 \)
(c) \(a = 963, b = 177 \)

4.2.3. Let \(a, b, q, \) and \(r \) be integers such that \(a = bq + r \). Prove that \(\text{gcd}(a, b) = \text{gcd}(b, r) \).

4.2.4. Let \(a, b, c, \) and \(d \) be integers such that \(a \) divides \(bc \) and \(d = \text{gcd}(a, b) \). Prove that \(a \) divides \(cd \).

4.2.5. Let \(a \) and \(b \) be integers and let \(d = \text{gcd}(a, b) \). If \(k \) is a positive integer, prove that \(kd = \text{gcd}(ka, kb) \).