This finite subdivision rule \mathcal{R} has a single tile type, a quadrilateral, and an edge pairing. It is orientation preserving, has bounded valence, and has mesh approaching 0. The subdivision complex $S_{\mathcal{R}}$ is the hyperbolic orbifold $(2,2,2,4)$ with underlying space a 2-sphere. Figure 1 shows that subdivision complex $S_{\mathcal{R}}$ and its subdivision $\mathcal{R}(S_{\mathcal{R}})$. The curve γ shown in Figure 2 is an invariant multicurve with multiplier 1, and hence is a Thurston obstruction. So the subdivision map $\sigma_{\mathcal{R}}$ is not realizable by a rational map and \mathcal{R} is not conformal.

The subdivision of the tile type is shown in Figure 3. The "bottom edge" in each tile and subtile is labelled 0 to help visualize the subdivision map. Since the Thurston multiplier is 1, moduli need not degenerate exponentially. Figure 4 shows squared rectangles for the second, third, and fourth subdivision of the model tile. Figure 5 shows the second and third subdivisions of the model tile, and Figure 6 shows the fourth subdivision, and Figure 7 shows the fifth subdivision.
Figure 3. The subdivision of the tile type

Figure 4. Squared rectangles

Figure 5. The second and third subdivisions of the model tile
Figure 6. The fourth subdivision of the model tile

Figure 7. The fifth subdivision of the model tile