1. [20 points]
 This problem addresses the $\xi = \xi(x)$ term that appears in the formula
 \[
 f(x) - p_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{j=0}^{n}(x - x_j)
 \]
given in Theorem 1.3 in the course notes, and Section 2.2.2 of Gautschi’s book.

 (a) Write down the linear interpolant $p_1(x)$ for the function $f(x) = x^3$ at the interpolation points $x_0 = 0$ and $x_1 = b$. Show that $\xi(x)$ takes the unique value $\xi(x) = (x + b)/3$.

 (b) Write down the linear interpolant $p_1(x)$ for the function $f(x) = 1/x$ at the interpolation points $x_0 = 1$ and $x_1 = 2$. Explicitly write down the function $\xi(x)$ for this case, and find the extreme values $\min_{1 \leq x \leq 2} \xi(x)$ and $\max_{1 \leq x \leq 2} \xi(x)$.

 [Süli and Mayers, Gautschi]

2. [20 points]
 Recall that for $A \in \mathbb{C}^{n \times n}$, the linear system $Ac = f$ has a unique solution for any f provided $\text{Ker}(A) = \{0\}$, where $\text{Ker}(A)$ denotes the kernel (null space) of A.

 If the kernel of A is larger, i.e., if there is a nonzero vector $z \in \text{Ker}(A)$, then there are two possibilities:

 - If $f \not\in \text{Ran}(A)$, then there is no solution c to the linear system $Ac = f$.
 - If $f \in \text{Ran}(A)$, then there are infinitely many solutions to the linear system $Ac = f$. In particular, if \tilde{c} satisfies $A\tilde{c} = f$, then any c of the form $c = \tilde{c} + \gamma z$ is also a solution, where γ is an arbitrary constant.

 With these facts in mind, please answer the following questions.

 (a) Suppose we wish to construct a polynomial $p_5 \in \mathbb{P}_5$ that interpolates a function $f \in \mathbb{C}^2[-1,1]$ in the following (somewhat unusual) manner: $p_5(-1) = f(-1)$; $p_5'(0) = f'(0)$; $p_5''(0) = f''(0)$; $p_5(1) = f(1)$; $p_5'(1) = f'(1)$. Write down a linear system to determine the coefficients c_0, \ldots, c_5 for p in the monomial basis: $p_5(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5$.

 (b) What is the kernel of the matrix A constructed in part (a)?
 (You may use the MATLAB command `null(A, 'r'`).)
 What does your answer imply about the existence and uniqueness of the interpolant p_5?

 (c) Consider the data: $f(-1) = -1$, $f'(-1) = 0$, $f(0) = 1$, $f''(0) = -2$, $f(1) = 3$, $f'(1) = 4$. Show that there are infinitely many choices for the polynomial p_5 that interpolate this data. Plot six of them. (Superimpose all on the same plot.)

3. [20 points]
 The Hermite interpolant $h_n \in \mathbb{P}_{2n+1}$ of $f \in C^1[a,b]$ at the points $\{x_j\}_{j=0}^{n}$ can be written in the form
 \[
 h_n(x) = \sum_{j=0}^{n} \left(A_j(x)f(x_j) + B_j(x)f'(x_j) \right),
 \]
where the functions A_j and B_j generalize the Lagrange basis functions:

\[A_j(x) = \left(1 - 2\ell_j'(x_j)(x - x_j)\right)\ell_j^2(x) \]
\[B_j(x) = (x - x_j)\ell_j^2(x), \]

with $\ell_j(x) = \prod_{k=0, k\neq j}^{n}(x - x_k)/(x_j - x_k)$.

(a) Verify that

\[A_j(x_k) = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}, \quad A_j'(x_k) = 0, \quad B_j(x_k) = 0, \quad B_j'(x_k) = \begin{cases} 1 & j = k \\ 0 & j \neq k. \end{cases} \]

(b) The above expression for the Hermite interpolating polynomial mimics the Lagrange form of the standard interpolating polynomial. Devise a scheme for constructing Hermite interpolants that generalizes the Newton form. What are your new Newton-like basis functions for P_{2n+1}?

4. [20 points]

The one-dimensional interpolation scheme studied in class can be adapted to higher dimensions. For example, suppose we are given a scalar-valued function $f(x, y)$, such as

\[f(x, y) = e^x \sin y, \]

and wish to construct a function of the form

\[p(x, y) = c_0 + c_1x + c_2y + c_3xy + c_4x^2 + c_5y^2 \]

that interpolates $f(x, y)$ at $(x_0, y_0), (x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), (x_5, y_5)$.

(a) Set up a linear system $Ac = f$ to determine the coefficients c_0, \ldots, c_5.

(b) Write a MATLAB code to determine c when $f(x, y) = e^x \sin y$ and the (x_j, y_j) pairs take the values listed in the following table.

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_j</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>y_j</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Report your value for c.

(c) Plot your model function $p(x, y)$ over $x \in [-1, 3], y \in [-1, 3]$ using MATLAB’s `surf` command. Compare this plot to the similar plot for $f(x, y)$, which can be obtained in the following manner.

\[
\text{f = inline('exp(x).*sin(y)','x','y');}
\text{[xx,yy] = meshgrid(linspace(-1,3,25),linspace(-1,3,25));}
\text{zz = f(xx,yy);}
\text{figure(1), clf}
\text{surf(xx,yy,zz)}
\]

Please submit plots of both $p(x, y)$ and $f(x, y)$.

5. [20 points]

Suppose the complex-valued function $f(z)$ of the variable $z \in \mathbb{C}$ is analytic in a region D of the complex plane whose boundary C is a simple closed contour. Furthermore, suppose the interpolation points x_0, \ldots, x_n $(n \geq 1)$ and the point x all lie in D.

(a) Let \(p_n \in \mathcal{P}_n \) denote the polynomial that interpolates \(f \) at \(x_0, \ldots, x_n \).
For any \(x \in D \), confirm the identity

\[
f(x) - p_n(x) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-x} \prod_{j=0}^n \frac{x-x_j}{z-x_j} \, dz
\]

by computing the integral on the right. (Hint: Consider the poles of the integrand, and use the Cauchy integral formula.)

For the rest of the problem, suppose that the real number \(x \) and the interpolation points \(x_0, \ldots, x_n \) all lie in the real interval \([a,b]\), and define, for constant \(K > 0 \),

\[
D = \{ z \in \mathbb{C} : |z-t| < K \text{ for some } t \in [a,b] \}.
\]

(b) Plot (or draw) the boundary \(C \) of \(D \) for \([a,b] = [-1,1]\) and \(K = 1 \).

(c) Show that the length of the contour \(C \) is \(2(b-a) + 2\pi K \), and that the integral formula in (a) leads to the bound

\[
|f(x) - p_n(x)| < \frac{(b-a + \pi K)M}{\pi K} \left(\frac{b-a}{K} \right)^{n+1},
\]

where \(M \) is such that \(|f(z)| \leq M \) on \(C \).

(d) Deduce that if \(f \) is analytic on \(D \) for some \(K > |b-a| \), then the sequence \(\{p_n\} \) converges to \(f \) uniformly on \([a,b]\) as \(n \to \infty \).

(e) Show that the requirements for the conclusion in (d) are not satisfied by Runge’s function, \(f(x) = 1/(1 + x^2) \) over \([a,b] = [-5,5]\). For what values of \(\alpha \) are the conditions satisfied by this \(f \) over \([a,b] = [-\alpha,\alpha]\)?

[Süli and Mayers, Problem 6.11]

6. [20 points]

The standard Lagrange interpolation formula for the polynomial \(p_n \in \mathcal{P}_n \) that interpolates \(f \in C[a,b] \) at the distinct points \(\{x_j\} \),

\[
p_n(x) = \sum_{j=0}^n \ell_j(x) f(x_j), \quad \text{where} \quad \ell_j(x) = \prod_{k=0, k \neq j}^n \frac{x-x_k}{x_j-x_k},
\]

requires \(O(n^2) \) floating point operations to evaluate for each point \(x \). In this exercise, we construct an alternative Lagrange interpolation formula, known as the barycentric interpolant, that can evaluate more efficiently and also has superior numerical stability.

Let \(w(x) = \prod_{k=0}^n (x-x_k) \) and define the barycentric weight as

\[
\beta_j = \frac{1}{\prod_{k=0, k \neq j}^n (x_j-x_k)}, \quad j = 0, \ldots, n.
\]

(a) Show that the Lagrange form for \(p_n \) can be rewritten as

\[
p_n(x) = w(x) \sum_{j=0}^n \frac{\beta_j}{x-x_j} f(x_j).
\]

(b) Verify that

\[
1 = w(x) \sum_{j=0}^n \frac{\beta_j}{x-x_j}.
\]

(Hint: This follows from part (a) with a special choice of \(f \).)
(c) Dividing the result of part (a) by the result of part (b) yields the barycentric interpolation formula

\[p_n(x) = \frac{\sum_{j=0}^{n} \beta_j \frac{f(x_j)}{x-x_j}}{\sum_{j=0}^{n} \beta_j \frac{1}{x-x_j}}. \]

Assuming the \(\beta_j \) values are already known, how many floating point operations are required to evaluate \(p_n(x) \) for some point \(x \)?

(d) Suppose \([a, b] = [0, 1] \) and \(x_j = j/n \) for \(j = 0, \ldots, n \). Derive a simple formula for \(\beta_j \) in terms of \(j \) and \(n \). For which \(j \) values is \(\beta_j \) largest (in absolute value)? (These terms will be favored in the formula in part (c).)

[Berrut and Trefethen]

7. [20 points]

As mentioned in class, the Weierstrass Approximation Theorem states that for any \(f \in C[a, b] \) and any \(\varepsilon > 0 \), there exists some polynomial (of unspecified degree) such that \(\max_{x \in [a, b]} |f(x) - p(x)| < \varepsilon. \)

The most common proof of this fact is constructive: one can use for the approximating polynomial the Bernstein polynomial of appropriate degree. When \([a, b] = [0, 1] \), the degree-\(n \) Bernstein polynomial is defined as

\[B_n(x) = \sum_{k=0}^{n} f(k/n) \binom{n}{k} x^k (1-x)^{n-k}, \]

where \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \) can be obtained in MATLAB via the \texttt{nchoosek} command.

Remarkably, it turns out that for any \(f \in C[a, b] \), we have \(\max_{x \in [a, b]} |f(x) - B_n(x)| \to 0 \) as \(n \to \infty \).

In this exercise you shall explore the rate at which this convergence occurs.

(a) Confirm that \(B_n(x) \to f(x) \) for \(x \in [0, 1] \) and \(f(x) = \sin(3\pi x) \) by producing a MATLAB plot that compares \(f(x) \) to \(B_n(x) \) on \(x \in [0, 1] \) for \(n = 5, 10, 20 \). (Please label the plot clearly!)

(b) Describe how to modify the definition of \(B_n \) so as to work for a general interval \([a, b] \neq [0, 1] \).

(c) Let \(f(x) = e^x \) and \([a, b] = [-1, 1] \). Write MATLAB code to compute \(B_n(x) \) as well as the polynomial \(p_n(x) \) that interpolates \(f \) at the Chebyshev points

\[x_k = \cos(k\pi/n), \quad k = 0, \ldots, n. \]

(You may use the monomial, Newton, or Lagrange basis.) Turn in a \texttt{semilogy} plot that compares \(\max_{x \in [-1, 1]} |f(x) - B_n(x)| \) with \(\max_{x \in [-1, 1]} |f(x) - p_n(x)| \) for \(n = 1, \ldots, 40 \). (For purposes of this problem, you may ignore any warnings issued by \texttt{nchoosek} for large \(n \).)

(d) Repeat part (c) with \(f(x) = x^2 - 1 \) and \([a, b] = [-1, 1] \).