Nonlinear Eigenvalue Problems: Interpolatory Algorithms and Transient Dynamics

Mark Embree · Virginia Tech

with
Serkan Gugercin
Jonathan Baker, Michael Brennan, Alexander Grimm
Virginia Tech

SIAM Conference on Applied Linear Algebra
Hong Kong · May 2018

Thanks to: International Linear Algebra Society (ILAS)
US National Science Foundation DMS-1720257
Rational interpolation for nlevps

Rational / Loewner techniques for nonlinear eigenvalue problems, motivated by algorithms from model reduction.

- Structure Preserving Rational Interpolation
- Data-Driven Rational Interpolation Matrix Pencils
- Minimal Realization via Rational Contour Integrals

transients for delay equations

Scalar delay equations: a case-study for how one can apply pseudospectra techniques to analyze the transient behavior of a dynamical system.

- *Finite dimensional nonlinear* problem
 ⇒ *infinite dimensional linear* problem
- Pseudospectral theory applies to the linear problem, *but the choice of norm is important*
<table>
<thead>
<tr>
<th>Problem</th>
<th>Equation</th>
<th># Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard eigenvalue problem</td>
<td>((A - \lambda I)v = 0)</td>
<td>(n)</td>
</tr>
<tr>
<td>Generalized eigenvalue problem</td>
<td>((A - \lambda E)v = 0)</td>
<td>(n)</td>
</tr>
<tr>
<td>Quadratic eigenvalue problem</td>
<td>((K + \lambda D + \lambda^2 M)v = 0)</td>
<td>(2n)</td>
</tr>
<tr>
<td>Polynomial eigenvalue problem</td>
<td>((\sum_{k=0}^{d} \lambda^k A_k)v = 0)</td>
<td>(dn)</td>
</tr>
<tr>
<td>Nonlinear eigenvalue problem</td>
<td>((\sum_{k=0}^{d} f_k(\lambda)A_k)v = 0)</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>
Nonlinear Eigenvalue Problems: The Final Frontier?

<table>
<thead>
<tr>
<th>Problem</th>
<th>Equation</th>
<th>Typical # Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Eigenvalue Problem</td>
<td>((A - \lambda I)v = 0)</td>
<td>(n)</td>
</tr>
<tr>
<td>Generalized Eigenvalue Problem</td>
<td>((A - \lambda E)v = 0)</td>
<td>(n)</td>
</tr>
<tr>
<td>Quadratic Eigenvalue Problem</td>
<td>((K + \lambda D + \lambda^2 M)v = 0)</td>
<td>(2n)</td>
</tr>
<tr>
<td>Polynomial Eigenvalue Problem</td>
<td>((\sum_{k=0}^{d} \lambda^k A_k)v = 0)</td>
<td>(dn)</td>
</tr>
<tr>
<td>Nonlinear Eigenvalue Problem</td>
<td>((\sum_{k=0}^{d} f_k(\lambda)A_k)v = 0)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Nonlinear Eigenvector Problem</td>
<td>(F(\lambda, v) = 0)</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>
Consider the simple *scalar* delay differential equation
\[x'(t) = -x(t - 1). \]
Substituting the ansatz \(x(t) = e^{\lambda t} \) yields the *nonlinear eigenvalue problem*
\[T(\lambda) = 1 + \lambda e^\lambda = 0. \]

32 (of infinitely many) eigenvalues of \(T \) for this *scalar* \((n = 1)\) equation:

See, e.g., [Michiels & Niculescu 2007]
Nonlinear eigenvalue problems have classical roots, but now form a fast-moving field with many excellent resources and new algorithms.

- Helpful surveys:
 - Mehrmann & Voss, *GAMM*, [2004]
 - Voss, *Handbook of Linear Algebra*, [2014]

- Software:
 - NLEVP test collection [Betcke, Higham, Mehrmann, Schröder, Tisseur 2013]
 - SLEPC contains NLEVP algorithm implementations [Roman et al.]

- Many algorithms based on Newton’s method, rational approximation, linearization, contour integration, projection, etc.

- Infinite dimensional nonlinear spectral problems are even more subtle:
 - [Appell, De Pascale, Vignoli 2004] give *seven distinct definitions* of the spectrum.
Rational Interpolation

Algorithms

for

Nonlinear Eigenvalue Problems
Rational interpolation problem.

Given points \(\{z_j\}_{j=1}^{2r} \subset \mathbb{C} \) and data \(\{f_j \equiv f(z_j)\}_{j=1}^{2r} \), find a rational function \(R(z) = \frac{p(z)}{q(z)} \) of type \((r - 1, r - 1) \) such that

\[
R(z_j) = f_j.
\]
Rational interpolation problem.
Given points \(\{z_j\}_{j=1}^{2r} \subset \mathbb{C} \) and data \(\{f_j \equiv f(z_j)\}_{j=1}^{2r} \), find a rational function \(R(z) = \frac{p(z)}{q(z)} \) of type \((r - 1, r - 1) \) such that
\[
R(z_j) = f_j.
\]

Given Lagrange basis functions \(\ell_j(z) = \prod_{k=1 \atop k \neq j}^{r}(z - z_k) \) and nodal polynomial \(\ell(z) = \prod_{k=1}^{r}(z - z_k) \),
\[
R(z) = \frac{p(z)}{q(z)} = \frac{\sum_{j=1}^{r} \beta_j \ell_j(z)}{\sum_{j=1}^{r} w_j \ell_j(z)} = \frac{\sum_{j=1}^{r} \beta_j \ell_j(z)}{\ell(z)} = \frac{\sum_{j=1}^{r} \beta_j}{\sum_{j=1}^{r} \frac{w_j}{z - z_j}}
\]

barycentric form
Lagrange basis: \(\ell_j(z) = \prod_{k=1 \atop k \neq j}^r (z - z_k) \)

\[
R(z) = \frac{p(z)}{q(z)} = \frac{\sum_{j=1}^r \beta_j \ell_j(z)}{\sum_{j=1}^r w_j \ell_j(z)} = \frac{\sum_{j=1}^r \frac{\beta_j}{z - z_j}}{\sum_{j=1}^r \frac{w_j}{z - z_j}}
\]
rational interpolation: barycentric perspective

Lagrange basis: \(\ell_j(z) = \prod_{k=1}^{r} (z - z_k) \)

\[
R(z) = \frac{p(z)}{q(z)} = \sum_{j=1}^{r} \beta_j \ell_j(z) = \sum_{j=1}^{r} \frac{\beta_j}{z - z_j} = \sum_{j=1}^{r} \frac{w_j}{z - z_j}
\]

▶ Fix \(\{\beta_j = f_j w_j\}_{j=1}^{r} \) to interpolate at \(z_1, \ldots, z_r \): \(R(z_j) = f_j \).
rational interpolation: barycentric perspective

Lagrange basis: $\ell_j(z) = \prod_{k=1 \atop k \neq j}^r (z - z_k)$

$$R(z) = \frac{p(z)}{q(z)} = \frac{\sum_{j=1}^r \beta_j \ell_j(z)}{\sum_{j=1}^r w_j \ell_j(z)} = \frac{\sum_{j=1}^r \beta_j}{\sum_{j=1}^r w_j}$$

- Fix $\{\beta_j = f_j w_j\}_{j=1}^r$ to interpolate at z_1, \ldots, z_r: $R(z_j) = f_j$.
- Determine w_1, \ldots, w_r to interpolate at z_{r+1}, \ldots, z_{2r}:

$$R(z_k) = \frac{\sum_{j=1}^r \frac{f_j w_j}{z_k - z_j}}{\sum_{j=1}^r \frac{w_j}{z_k - z_j}} = f_k \implies \sum_{j=1}^r \frac{f_j w_j}{z_k - z_j} = \sum_{j=1}^r \frac{f_k w_j}{z_k - z_j}$$
rational interpolation: barycentric perspective

- Fix \(\{\beta_j = f_j w_j\}_{j=1}^r \) to interpolate at \(z_1, \ldots, z_r \): \(r(z_j) = f_j \).
- Determine \(w_1, \ldots, w_r \) to interpolate at \(z_{r+1}, \ldots, z_{2r} \):

\[
R(z_k) = f_k \implies \sum_{j=1}^r \frac{f_j w_j}{z_k - z_j} = \sum_{j=1}^r \frac{f_k w_j}{z_k - z_j} \implies \sum_{j=1}^r \frac{f_j - f_k}{z_j - z_k} w_j = 0.
\]
Fix \(\{ \beta_j = f_j w_j \}_{j=1}^r \) to interpolate at \(z_1, \ldots, z_r \): \(r(z_j) = f_j \).

Determine \(w_1, \ldots, w_r \) to interpolate at \(z_{r+1}, \ldots, z_{2r} \):

\[
R(z_k) = f_k \implies \sum_{j=1}^r \frac{f_j w_j}{z_k - z_j} = \sum_{j=1}^r \frac{f_k w_j}{z_k - z_j} \implies \sum_{j=1}^r \frac{f_j - f_k}{z_j - z_k} w_j = 0.
\]

\[
\begin{bmatrix}
\frac{f_1 - f_{r+1}}{z_1 - z_{r+1}} & \frac{f_2 - f_{r+1}}{z_2 - z_{r+1}} & \cdots & \frac{f_r - f_{r+1}}{z_r - z_{r+1}} \\
\frac{f_1 - f_{r+2}}{z_1 - z_{r+2}} & \frac{f_2 - f_{r+2}}{z_2 - z_{r+2}} & \cdots & \frac{f_r - f_{r+2}}{z_r - z_{r+2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{f_1 - f_{2r}}{z_1 - z_{2r}} & \frac{f_2 - f_{2r}}{z_2 - z_{2r}} & \cdots & \frac{f_r - f_{2r}}{z_r - z_{2r}}
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2 \\
\vdots \\
w_r
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

\textit{Loewner matrix, } \mathbb{L}
Fix \(\{ \beta_j = f_j w_j \}_{j=1}^r \) to interpolate at \(z_1, \ldots, z_r \): \(r(z_j) = f_j \).

Determine \(w_1, \ldots, w_r \) to interpolate at \(z_{r+1}, \ldots, z_{2r} \):

\[
R(z_k) = f_k \implies \sum_{j=1}^r \frac{f_j w_j}{z_k - z_j} = \sum_{j=1}^r \frac{f_k w_j}{z_k - z_j} \implies \sum_{j=1}^r \frac{f_j - f_k}{z_j - z_k} w_j = 0.
\]

\[
\begin{bmatrix}
\frac{f_1 - f_{r+1}}{z_1 - z_{r+1}} & \frac{f_2 - f_{r+1}}{z_2 - z_{r+1}} & \ldots & \frac{f_r - f_{r+1}}{z_r - z_{r+1}} \\
\frac{f_1 - f_{r+2}}{z_1 - z_{r+2}} & \frac{f_2 - f_{r+2}}{z_2 - z_{r+2}} & \ldots & \frac{f_r - f_{r+2}}{z_r - z_{r+2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{f_1 - f_{2r}}{z_1 - z_{2r}} & \frac{f_2 - f_{2r}}{z_2 - z_{2r}} & \ldots & \frac{f_r - f_{2r}}{z_r - z_{2r}}
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2 \\
\vdots \\
w_r
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

Loewner matrix, \(L \)

Barycentric rational interpolation algorithm [Antoulas & Anderson [1986]]

AAA (Adaptive Antoulas–Anderson) Method [Nakatsukasa, Sète, Trefethen, 2016]
The rational interpolant $R(z)$ to f at z_1, \ldots, z_{2r} can also be formulated in state-space form using Loewner matrix techniques.

$$R(z) = c (\mathbb{I}_s - z\mathbb{L})^{-1} b,$$

where $c = [f_{r+1}, \ldots, f_{2r}]$, $b = [f_1, \ldots, f_r]^T$ and

$$\begin{bmatrix}
\frac{z_1 f_1 - z_{r+1} f_{r+1}}{z_1 - z_{r+1}} & \ldots & \frac{z_r f_r - z_{r+1} f_{r+1}}{z_r - z_{r+1}} \\
\vdots & \ddots & \vdots \\
\frac{z_1 f_1 - z_{2r} f_{2r}}{z_1 - z_{2r}} & \ldots & \frac{z_r f_r - z_{2r} f_{2r}}{z_r - z_{2r}}
\end{bmatrix}, \quad \begin{bmatrix}
\frac{f_1 - f_{r+1}}{z_1 - z_{r+1}} & \ldots & \frac{f_r - f_{r+1}}{z_r - z_{r+1}} \\
\vdots & \ddots & \vdots \\
\frac{f_1 - f_{2r}}{z_1 - z_{2r}} & \ldots & \frac{f_r - f_{2r}}{z_r - z_{2r}}
\end{bmatrix}.$$

shifted Loewner matrix, \mathbb{I}_s
Loewner matrix, \mathbb{L}

- State space formulation proposed by Mayo & Antoulas [2007]
- Natural approach for handling *tangential interpolation for vector data*
- For details, applications, and extensions, see [Antoulas, Lefteriu, Ionita 2017]
Scenario: \(T(\lambda) \in \mathbb{C}^{n \times n} \) has *large dimension* \(n \).

Goal: Reduce dimension of \(T(\lambda) \) *but maintain the nonlinear structure.* Smaller problem will be more amenable to dense nonlinear eigensolvers.

Method: Rational tangential interpolation of \(T(\lambda) \)^{-1} at \(r \) points, directions.

Iteratively Corrected Rational Interpolation method
approach one: structure preserving rational interpolation

Scenario: \(T(\lambda) \in \mathbb{C}^{n \times n} \) has large dimension \(n \).

Goal: Reduce dimension of \(T(\lambda) \) but maintain the nonlinear structure. Smaller problem will be more amenable to dense nonlinear eigensolvers.

Method: Rational tangential interpolation of \(T(\lambda)^{-1} \) at \(r \) points, directions.

Iteratively Corrected Rational Interpolation method

- Pick \(r \) interpolation points \(\{z_j\}_{j=1}^r \) and interpolation directions \(\{w_j\}_{j=1}^r \).
Scenario: \(T(\lambda) \in \mathbb{C}^{n \times n} \) has **large dimension** \(n \).

Goal: Reduce dimension of \(T(\lambda) \) **but maintain the nonlinear structure.**
Smaller problem will be more amenable to dense nonlinear eigensolvers.

Method: Rational tangential interpolation of \(T(\lambda)^{-1} \) at \(r \) points, directions.

Iteratively Corrected Rational Interpolation method

- Pick \(r \) **interpolation points** \(\{z_j\}_{j=1}^r \) and **interpolation directions** \(\{w_j\}_{j=1}^r \).

- Construct a basis for projection (cf. **shift-invert Arnoldi**):

 \[
 U = \text{orth}\left([T(z_1)^{-1}w_1 \ T(z_2)^{-1}w_2 \ \cdots \ T(z_r)^{-1}w_r]\right) \in \mathbb{C}^{n \times r}.
 \]
Scenario: \(T(\lambda) \in \mathbb{C}^{n \times n} \) has *large dimension* \(n \).

Goal: Reduce dimension of \(T(\lambda) \) *but maintain the nonlinear structure.* Smaller problem will be more amenable to dense nonlinear eigensolvers.

Method: Rational tangential interpolation of \(T(\lambda)^{-1} \) at \(r \) points, directions.

Iteratively Corrected Rational Interpolation method

- Pick \(r \) *interpolation points* \(\{z_j\}_{j=1}^r \) and *interpolation directions* \(\{w_j\}_{j=1}^r \).

- Construct a basis for projection (cf. *shift-invert Arnoldi*):
 \[
 U = \text{orth}([T(z_1)^{-1}w_1 \quad T(z_2)^{-1}w_2 \quad \cdots \quad T(z_r)^{-1}w_r]) \in \mathbb{C}^{n \times r}.
 \]

- Form the reduced-dimension nonlinear system:
 \[
 T_r(\lambda) := U^*T(\lambda)U \in \mathbb{C}^{r \times r}.
 \]
approach one: structure preserving rational interpolation

Scenario: \(T(\lambda) \in \mathbb{C}^{n \times n} \) has large dimension \(n \).

Goal: Reduce dimension of \(T(\lambda) \) but maintain the nonlinear structure. Smaller problem will be more amenable to dense nonlinear eigensolvers.

Method: Rational tangential interpolation of \(T(\lambda)^{-1} \) at \(r \) points, directions.

Iteratively Corrected Rational Interpolation method

- Pick \(r \) interpolation points \(\{z_j\}_{j=1}^r \) and interpolation directions \(\{w_j\}_{j=1}^r \).

- Construct a basis for projection (cf. shift-invert Arnoldi):
 \[
 U = \text{orth}([T(z_1)^{-1}w_1 \ T(z_2)^{-1}w_2 \ \cdots \ T(z_r)^{-1}w_r]) \in \mathbb{C}^{n \times r}.
 \]

- Form the reduced-dimension nonlinear system:
 \[
 T_r(\lambda) := U^*T(\lambda)U \in \mathbb{C}^{r \times r}.
 \]

- Compute the spectrum of \(T_r(\lambda) \) and use its eigenvalues and eigenvectors to update \(\{z_j\}_{j=1}^r \) and \(\{w_j\}_{j=1}^r \), and repeat.
approach one: structure preserving rational interpolation

The choice of projection subspace $\text{Ran}(U)$ delivers the key *interpolation property*.

Interpolation Theorem.

Provided $z_j \notin \sigma(T) \cup \sigma(T_r)$ for all $j = 1, \ldots, r$,

\[T(z_j)^{-1} w_j = U T_r(z_j)^{-1} U^* w_j. \]

The choice of projection subspace $\text{Ran}(U)$ delivers the key *interpolation property*.

Interpolation Theorem.
Provided $z_j \notin \sigma(T) \cup \sigma(T_r)$ for all $j = 1, \ldots, r$,

$$T(z_j)^{-1}w_j = UT_r(z_j)^{-1}U^*w_j.$$

Illustration. As for all orthogonal projection methods:

$$T(\lambda) = f_0(\lambda) A_0 + f_1(\lambda) A_1 + f_2(\lambda) A_2$$

$$T_r(\lambda) = f_0(\lambda) U^*A_0U + f_1(\lambda) U^*A_1U + f_2(\lambda) U^*A_2U$$
approach one: structure preserving rational interpolation

The choice of projection subspace \(\text{Ran}(U) \) delivers the key interpolation property.

Interpolation Theorem.
Provided \(z_j \not\in \sigma(T) \cup \sigma(T_r) \) for all \(j = 1, \ldots, r \),
\[
T(z_j)^{-1}w_j = UT_r(z_j)^{-1}U^*w_j.
\]

Illustration. As for all orthogonal projection methods:
\[
\begin{align*}
T(\lambda) &= f_0(\lambda)A_0 + f_1(\lambda)A_1 + f_2(\lambda)A_2 \\
T_r(\lambda) &= f_0(\lambda)U^*A_0U + f_1(\lambda)U^*A_1U + f_2(\lambda)U^*A_2U
\end{align*}
\]

- The nonlinear functions \(f_j \) remain intact: *the structure is preserved.*
- The coefficients \(A_j \in \mathbb{C}^{n \times n} \) are compressed to \(U^*A_jU \in \mathbb{C}^{r \times r} \).
- Contrast: [Lietaert, Pérez, Vandereycken, Meerbergen 2018+] apply AAA approximation to \(f_j(\lambda) \), leave coefficient matrices intact.
approach one: structure preserving rational interpolation

Example 1. \(T(\lambda) = \lambda I - A - e^{-\lambda}I, \)

where \(A \) is symmetric with \(n = 1000; \) eigenvalues of \(A = \{-1, -2, \ldots, -n\}. \)

- Eigenvalues of full \(T(\lambda) \)
 - Interpolation points \(\{z_j\} \)

\(r = 16 \) used at each cycle (new points = real eigenvalues of \(T_r(\lambda) \))

initial \(\{z_j\} \) uniformly distributed on \([-10i, 10i]\), \(\{w_j\} \) selected randomly
Example 1. $T(\lambda) = \lambda I - A - e^{-\lambda} I$,
where A is symmetric with $n = 1000$; eigenvalues of $A = \{-1, -2, \ldots, -n\}$.

- Eigenvalues of full $T(\lambda)$
- Interpolation points $\{z_j\}$
- Eigenvalues of reduced $T_r(\lambda)$

 $r = 16$ used at each cycle (new points = real eigenvalues of $T_r(\lambda)$)

initial $\{z_j\}$ uniformly distributed on $[-10i, 10i]$, $\{w_j\}$ selected randomly
Example 1. $T(\lambda) = \lambda I - A - e^{-\lambda}I,$
where A is symmetric with $n = 1000$; eigenvalues of $A = \{-1, -2, \ldots, -n\}$.

- **Eigenvalues of full $T(\lambda)$**
 - Interpolation points $\{z_j\}$
 - Eigenvalues of reduced $T_r(\lambda)$

 $r = 16$ used at each cycle (new points = real eigenvalues of $T_r(\lambda)$)

 initial $\{z_j\}$ uniformly distributed on $[-10i, 10i]$, $\{w_j\}$ selected randomly
Example 1. $T(\lambda) = \lambda I - A - e^{-\lambda}I$,
where A is symmetric with $n = 1000$; eigenvalues of $A = \{-1, -2, \ldots, -n\}$.

- Eigenvalues of full $T(\lambda)$
 - Interpolation points $\{z_j\}$
 - Eigenvalues of reduced $T_r(\lambda)$

 $r = 16$ used at each cycle (new points $=$ real eigenvalues of $T_r(\lambda)$)

 initial $\{z_j\}$ uniformly distributed on $[-10i, 10i]$, $\{w_j\}$ selected randomly
Example 1. $T(\lambda) = \lambda I - A - e^{-\lambda} I$, where A is symmetric with $n = 1000$; eigenvalues of $A = \{-1, -2, \ldots, -n\}$.

- Eigenvalues of full $T(\lambda)$
 - Interpolation points $\{z_j\}$
- Eigenvalues of reduced $T_r(\lambda)$
 - $r = 16$ used at each cycle (new points $=$ real eigenvalues of $T_r(\lambda)$)
 - initial $\{z_j\}$ uniformly distributed on $[-10i, 10i]$, $\{w_j\}$ selected randomly
Example 1. \(T(\lambda) = \lambda I - A - e^{-\lambda I} \),
where \(A \) is symmetric with \(n = 1000 \); eigenvalues of \(A = \{-1, -2, \ldots, -n\} \).

- Eigenvalues of full \(T(\lambda) \)
- Eigenvalues of reduced \(T_r(\lambda) \) at the final cycle
- Final interpolation points \(\{z_j\} \)
 \(r = 16 \) used at each cycle (new points = real eigenvalues of \(T_r(\lambda) \))
 initial \(\{z_j\} \) uniformly distributed on \([-10i, 10i] \), \(\{w_j\} \) selected randomly
Example 1. $\mathbf{T}(\lambda) = \lambda \mathbf{I} - \mathbf{A} - e^{-\lambda} \mathbf{I}$, where \mathbf{A} is symmetric with $n = 1000$; eigenvalues of $\mathbf{A} = \{-1, -2, \ldots, -n\}$.

- Eigenvalues of full $\mathbf{T}(\lambda)$
 - Eigenvalues of reduced $\mathbf{T}_r(\lambda)$ at the final cycle
 - Final interpolation points $\{z_j\}$
 - $r = 16$ used at each cycle (new points = real eigenvalues of $\mathbf{T}_r(\lambda)$)
 - initial $\{z_j\}$ uniformly distributed on $[-10i, 10i]$, $\{w_j\}$ selected randomly
Example 2. $T(\lambda) = \lambda I - A - e^{-\lambda} I$,
A is symmetric with $n = 1000$; eigenvalues of $A = \{-1/n, -4/n, \ldots, -n\}$.

- Eigenvalues of full $T(\lambda)$
 - Eigenvalues of reduced $T_r(\lambda)$ at the final cycle
 - Final interpolation points $\{z_j\}$

 $r = 16$ used at each cycle (new points = real eigenvalues of $T_r(\lambda)$)

 initial $\{z_j\}$ uniformly distributed on $[-10i, 10i]$, $\{w_j\}$ selected randomly
Example 2. \(T(\lambda) = \lambda I - A - e^{-\lambda} I \),
\(A \) is symmetric with \(n = 1000 \); eigenvalues of \(A = \{-1/n, -4/n, \ldots, -n\} \).

- Eigenvalues of full \(T(\lambda) \)
- Eigenvalues of reduced \(T_r(\lambda) \) at the final cycle
- Final interpolation points \(\{z_j\} \)
 \(r = 16 \) used at each cycle (new points = real eigenvalues of \(T_r(\lambda) \))
- Initial \(\{z_j\} \) uniformly distributed on \([-10i, 10i]\), \(\{w_j\} \) selected randomly

convergence of \(r/2 \) rightmost \((z_j, w_j)\) pairs
approach two: data-driven rational interpolation

Scenario: $T(\lambda) \in \mathbb{C}^{n \times n}$ has large dimension n.

Goal: Obtain a small *linear matrix pencil* that *interpolates* the nonlinear eigenvalue problem. Smaller problem requires no further linearization.

Method: Data-driven rational interpolation of $T(\lambda)^{-1}$.

Data-Driven Rational Interpolation Matrix Pencil method
approach two: data-driven rational interpolation

Scenario: \(T(\lambda) \in \mathbb{C}^{n \times n} \) has large dimension \(n \).

Goal: Obtain a small linear matrix pencil that interpolates the nonlinear eigenvalue problem. Smaller problem requires no further linearization.

Method: Data-driven rational interpolation of \(T(\lambda)^{-1} \).

Data-Driven Rational Interpolation Matrix Pencil method

- Specify interpolation data:
 - left points, directions: \(z_1, \ldots, z_r \in \mathbb{C}, \quad w_1, \ldots, w_r \in \mathbb{C}^n \)
 - right points, directions: \(z_{r+1}, \ldots, z_{2r} \in \mathbb{C}, \quad w_{r+1}, \ldots, w_{2r} \in \mathbb{C}^n \)
approach two: data-driven rational interpolation

Scenario: \(\mathbf{T}(\lambda) \in \mathbb{C}^{n \times n} \) has large dimension \(n \).

Goal: Obtain a small linear matrix pencil that interpolates the nonlinear eigenvalue problem. Smaller problem requires no further linearization.

Method: Data-driven rational interpolation of \(\mathbf{T}(\lambda)^{-1} \).

Data-Driven Rational Interpolation Matrix Pencil method

▶ Specify interpolation data:

left points, directions: \(z_1, \ldots, z_r \in \mathbb{C}, \ w_1, \ldots, w_r \in \mathbb{C}^n \)

right points, directions: \(z_{r+1}, \ldots, z_{2r} \in \mathbb{C}, \ w_{r+1}, \ldots, w_{2r} \in \mathbb{C}^n \)

▶ Construct \(\mathbf{T}_r(\lambda)^{-1} : = \mathbf{C}_r (\mathbf{A}_r - \lambda \mathbf{E}_r)^{-1} \mathbf{B}_r \) to tangentially interpolate \(\mathbf{T}(\lambda)^{-1} \).

Tangential Interpolation Theorem. Provided \(z_j \notin \sigma(\mathbf{T}) \cup \sigma(\mathbf{T}_r) \),

\[
\begin{align*}
\mathbf{w}_j^T \mathbf{T}(z_j)^{-1} &= \mathbf{w}_j^T \mathbf{T}_r(z_j)^{-1}, \quad j = 1, \ldots, r; \\
\mathbf{T}(z_j)^{-1} \mathbf{w}_j &= \mathbf{T}_r(z_j)^{-1} \mathbf{w}_j, \quad j = r + 1, \ldots, 2r.
\end{align*}
\]
Given left points, directions: \(z_1, \ldots, z_r \in \mathbb{C}, \ w_1, \ldots, w_r \in \mathbb{C}^n \)
right points, directions: \(z_{r+1}, \ldots, z_{2r} \in \mathbb{C}, \ w_{r+1}, \ldots, w_{2r} \in \mathbb{C}^n \)

Define left interpolation data: \(f_1 = T(z_1)^{-T}w_1, \ldots, f_r = T(z_r)^{-T}w_r \)
right interpolation data: \(f_{r+1} = T(z_{r+1})^{-1}w_{r+1}, \ldots, f_{2r} = T(z_{2r})^{-1}w_{2r} \)
approach two: data-driven rational interpolation

Given
left points, directions:
\(z_1, \ldots, z_r \in \mathbb{C}, \quad w_1, \ldots, w_r \in \mathbb{C}^n \)

right points, directions:
\(z_{r+1}, \ldots, z_{2r} \in \mathbb{C}, \quad w_{r+1}, \ldots, w_{2r} \in \mathbb{C}^n \)

Define
left interpolation data:
\(f_1 = T(z_1)^{-T}w_1, \quad \ldots, \quad f_r = T(z_r)^{-T}w_r \)

right interpolation data:
\(f_{r+1} = T(z_{r+1})^{-1}w_{r+1}, \quad \ldots, \quad f_{2r} = T(z_{2r})^{-1}w_{2r} \)

Order-\(r \) (linear) model:
\(T_r(z)^{-1} = C_r(A_r - zE_r)^{-1}B_r \)
Approach Two: Data-Driven Rational Interpolation

Given **left points, directions:**

\[z_1, \ldots, z_r \in \mathbb{C}, \quad w_1, \ldots, w_r \in \mathbb{C}^n \]

right points, directions:

\[z_{r+1}, \ldots, z_{2r} \in \mathbb{C}, \quad w_{r+1}, \ldots, w_{2r} \in \mathbb{C}^n \]

Define **left interpolation data:**

\[f_1 = T(z_1)^{-T}w_1, \quad \ldots, \quad f_r = T(z_r)^{-T}w_r \]

right interpolation data:

\[f_{r+1} = T(z_{r+1})^{-1}w_{r+1}, \quad \ldots, \quad f_{2r} = T(z_{2r})^{-1}w_{2r} \]

Order-\(r \) (linear) model:

\[T_r(z)^{-1} = C_r(A_r - zE_r)^{-1}B_r \]

Coefficients

- **\(C_r \):**
 \[
 C_r = \begin{bmatrix} f_{r+1}, \ldots, f_{2r} \end{bmatrix}
 \]

- **\(A_r \):**
 \[
 A_r = \begin{bmatrix}
 \frac{z_1 f_1^T w_{r+1} - z_{r+1}^T f_{r+1}}{z_1 - z_{r+1}} & \ldots & \frac{z_r f_r^T w_{r+1} - z_{r+1}^T f_{r+1}}{z_r - z_{r+1}} \\
 0 & \ddots & 0 \\
 \frac{z_1 f_1^T w_{2r} - z_{2r}^T f_{2r}}{z_1 - z_{2r}} & \ldots & \frac{z_r f_r^T w_{2r} - z_{2r}^T f_{2r}}{z_r - z_{2r}}
 \end{bmatrix}
 \]

- **\(E_r \):**
 \[
 E_r = \begin{bmatrix}
 \frac{f_1^T w_{r+1} - w_1^T f_{r+1}}{z_1 - z_{r+1}} & \ldots & \frac{f_r^T w_{r+1} - w_r^T f_{r+1}}{z_r - z_{r+1}} \\
 0 & \ddots & 0 \\
 \frac{f_1^T w_{2r} - w_1^T f_{2r}}{z_1 - z_{2r}} & \ldots & \frac{f_r^T w_{2r} - w_r^T f_{2r}}{z_r - z_{2r}}
 \end{bmatrix}
 \]

- **\(B_r \):**
 \[
 B_r = \begin{bmatrix} f_1, \ldots, f_r \end{bmatrix}^T
 \]

Shifted Loewner

Loewner
approach two: data-driven rational interpolation

Given

left points, directions: \(z_1, \ldots, z_r \in \mathbb{C}, \quad w_1, \ldots, w_r \in \mathbb{C}^n \)

right points, directions: \(z_{r+1}, \ldots, z_{2r} \in \mathbb{C}, \quad w_{r+1}, \ldots, w_{2r} \in \mathbb{C}^n \)

Define

left interpolation data: \(f_1 = T(z_1)^{-T}w_1, \quad \ldots, \quad f_r = T(z_r)^{-T}w_r \)

right interpolation data: \(f_{r+1} = T(z_{r+1})^{-1}w_{r+1}, \quad \ldots, \quad f_{2r} = T(z_{2r})^{-1}w_{2r} \)

Rank-\(r \) (linear) model: \(T_r(z)^{-1} = C_r(A_r - zE_r)^{-1}B_r \)

\[
\begin{align*}
T(z)^{-1} & \approx C_r \quad \text{linear matrix pencil} \\
(A_r - zE_r)^{-1} & B_r
\end{align*}
\]
Example. $T(\lambda) = \lambda I - A - e^{-\lambda I}$,

where A is symmetric with $n = 1000$; eigenvalues of $A = \{-1, -2, \ldots, -n\}$.

- Eigenvalues of full $T(\lambda)$
 - Eigenvalues of reduced matrix pencil $A_r - zE_r$
 - $r = 40$ interpolation points used, uniform in interval $[-80i, 80i]$

Hermite interpolation variant that only uses r distinct interpolation points.

Interpolation directions from smallest singular values of $T(z_j)$.

zoom out
approach three: Loewner realization via contour integration

Scenario: Seek all eigenvalues of $T(\lambda) \in \mathbb{C}^{n \times n}$ in a prescribed region Ω of \mathbb{C}.

Goal: Use Keldysh’s Theorem to isolate interesting part of $T(\lambda)$ in Ω.

Method: Contour integration of $T(\lambda)$ against *rational test functions.*
Loewner matrix will reveal number of eigenvalues in Ω.

Theorem [Keldysh 1951]. Suppose $T(z)$ has m eigenvalues $\lambda_1, \ldots, \lambda_m$ (counting multiplicity) in the region $\Omega \subset \mathbb{C}$, all semi-simple. Then

$$T(z)^{-1} = V(zI - \Lambda)^{-1}U^* + R(z),$$

- $V = [v_1 \cdots v_m]$, $U = [u_1 \cdots u_m]$, $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_m)$, $u_j^*T'(\lambda_j)v_j = 1$;
- $R(z)$ is analytic in Ω.

Scenario: Seek all eigenvalues of \(T(\lambda) \in \mathbb{C}^{n \times n} \) in a prescribed region \(\Omega \) of \(\mathbb{C} \).

Goal: Use Keldysh’s Theorem to isolate interesting part of \(T(\lambda) \) in \(\Omega \).

Method: Contour integration of \(T(\lambda) \) against rational test functions. Loewner matrix will reveal number of eigenvalues in \(\Omega \).

Theorem [Keldysh 1951]. Suppose \(T(z) \) has \(m \) eigenvalues \(\lambda_1, \ldots, \lambda_m \) (counting multiplicity) in the region \(\Omega \subset \mathbb{C} \), all semi-simple. Then

\[
T(z)^{-1} = V(zI - \Lambda)^{-1}U^* + R(z),
\]

- \(V = [v_1 \cdots v_m] \), \(U = [u_1 \cdots u_m] \), \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_m) \), \(u_j^*T'(\lambda_j)v_j = 1 \);
- \(R(z) \) is analytic in \(\Omega \).

\[
T(z)^{-1} = H(z) + R(z)
\]

where \(H(z) := V(zI - \Lambda)^{-1}U^* \) is a transfer function for a linear system.
Theorem [Keldysh 1951]. Suppose $T(z)$ has m eigenvalues $\lambda_1, \ldots, \lambda_m$ (counting multiplicity) in the region $\Omega \subset \mathbb{C}$, all semi-simple. Then

$$T(z)^{-1} = V(zI - \Lambda)^{-1}U^* + R(z),$$

- $V = [v_1 \cdots v_m]$, $U = [U_1 \cdots U_m]$, $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_m)$, $U^*T'(\lambda_j)v_j = 1$;
- $R(z)$ is analytic in Ω.

\[
\begin{align*}
T(z)^{-1} = & \quad V \\
& (zI - \Lambda)^{-1} \\
& U^* \\
& + \quad R(z)
\end{align*}
\]

$h(z) := V(zI - \Lambda)^{-1}U^*$

$n \times n$ linear system, order m:

m poles in Ω
A family of algorithms use the fact that, by the Cauchy integral formula,

$$\frac{1}{2\pi i} \int_{\partial \Omega} f(z) T(z)^{-1} \, dz = V f(\Lambda) U^*,$$

see [Asakura, Sakurai, Tadano, Ikegami, Kimura 2009], [Beyn 2012], [Yokota & Sakurai 2013], etc., building upon contour integral eigensolvers for matrix pencils [Sakurai & Sugiura 2003], [Polizzi 2009], etc.

These algorithms use \(f(z) = z^k \) for \(k = 0, 1, \ldots \) to produce Hankel matrix pencils.
approach three: Loewner realization via contour integration

\[T(z)^{-1} = H(z) + R(z) \]

where \(H(z) : V(zI - \Lambda)^{-1}U^* \) is a transfer function for a linear system.

A family of algorithms use the fact that, by the Cauchy integral formula,

\[\frac{1}{2\pi i} \int_{\partial\Omega} f(z) T(z)^{-1} \, dz = V f(\Lambda) U^*; \]

see [Asakura, Sakurai, Tadano, Ikegami, Kimura 2009], [Beyn 2012], [Yokota & Sakurai 2013], etc., building upon contour integral eigensolvers for matrix pencils [Sakurai & Sugiura 2003], [Polizzi 2009], etc.

These algorithms use \(f(z) = z^k \) for \(k = 0, 1, \ldots \) to produce Hankel matrix pencils.

Key observation: If we use \(f(z) = 1/(z_j - z) \) for \(z_j \) exterior to \(\Omega \), we obtain

\[\frac{1}{2\pi i} \int_{\partial\Omega} \frac{1}{z_j - z} T(z)^{-1} \, dz = V(z_jI - \Lambda)^{-1}U^* = H(z_j). \]

Contour integrals yield measurements of the linear system with the desired eigenvalues.
approach three: Loewner realization via contour integration

Minimal Realization via Rational Contour Integrals for m eigenvalues

Let $r \geq m$, and select interpolation points and directions:

- **left points, directions:** $z_1, \ldots, z_r \in \mathbb{C} \setminus \Omega$, $w_1, \ldots, w_r \in \mathbb{C}^n$
- **right points, directions:** $z_{r+1}, \ldots, z_{2r} \in \mathbb{C} \setminus \Omega$, $w_{r+1}, \ldots, w_{2r} \in \mathbb{C}^n$

Use contour integrals to compute the left and right interpolation data:

- **left interpolation data:** $f_1 = H(z_1)T_{w_1}, \ldots, f_r = H(z_r)T_{w_r}$
- **right interpolation data:** $f_{r+1} = H(z_{r+1})w_{r+1}, \ldots, f_{2r} = H(z_{2r})w_{2r}$

Construct Loewner and shifted Loewner matrices from this data, just as in the Data-Driven Rational Interpolation method:

$C_r = [f_{r+1}, \ldots, f_{2r}]$
$B_r = [f_1, \ldots, f_r]^T$
$A_r = $ shifted Loewner matrix
$E_r = $ Loewner matrix

If $r = m$, then $V(z_I - \Lambda)^{-1}U^* = C_r(A_r - zE_r)^{-1}B_r$: compute eigenvalues!

If $r > m$, use SVD truncation / minimum realization techniques to reduce dimension; cf. [Mayo & Antoulas 2007].
approach three: Loewner realization via contour integration

Minimal Realization via Rational Contour Integrals for m eigenvalues

- Let $r \geq m$, and select interpolation points and directions:

 left points, directions: $z_1, \ldots, z_r \in \mathbb{C} \setminus \Omega$, $w_1, \ldots, w_r \in \mathbb{C}^n$

 right points, directions: $z_{r+1}, \ldots, z_{2r} \in \mathbb{C} \setminus \Omega$, $w_{r+1}, \ldots, w_{2r} \in \mathbb{C}^n$

- Use contour integrals to compute the left and right interpolation data:

 left interpolation data: $f_1 = H(z_1)^T w_1$, \ldots, $f_r = H(z_r)^T w_r$

 right interpolation data: $f_{r+1} = H(z_{r+1}) w_{r+1}$, \ldots, $f_{2r} = H(z_{2r}) w_{2r}$

 $H(z_j)w_j = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{1}{z_j - z} T(z)^{-1} w_j \, dz$.
approach three: Loewner realization via contour integration

Minimal Realization via Rational Contour Integrals for m eigenvalues

- Let $r \geq m$, and select interpolation points and directions:

 left points, directions: $z_1, \ldots, z_r \in \mathbb{C} \setminus \Omega$, \quad $w_1, \ldots, w_r \in \mathbb{C}^n$

 right points, directions: $z_{r+1}, \ldots, z_{2r} \in \mathbb{C} \setminus \Omega$, \quad $w_{r+1}, \ldots, w_{2r} \in \mathbb{C}^n$

- Use contour integrals to compute the left and right interpolation data:

 left interpolation data: $f_1 = H(z_1)^T w_1$, \quad \ldots, \quad f_r = H(z_r)^T w_r$

 right interpolation data: $f_{r+1} = H(z_{r+1}) w_{r+1}$, \quad \ldots, \quad $f_{2r} = H(z_{2r}) w_{2r}$

 $$H(z_j) w_j = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{1}{z_j - z} T(z)^{-1} w_j \, dz.$$

- Construct Loewner and shifted Loewner matrices from this data, just as in the Data-Driven Rational Interpolation method:

 $C_r = [f_{r+1}, \ldots, f_{2r}]$ \quad $B_r = [f_1, \ldots, f_r]^T$

 $A_r = \text{shifted Loewner matrix}$ \quad $E_r = \text{Loewner matrix}$

- If $r = m$, then

 $$V(z_I - \Lambda) - 1 U^* = C_r (A_r - z E_r)^{-1} B_r$$

- If $r > m$, use SVD truncation / minimum realization techniques to reduce dimension; cf. [Mayo & Antoulas 2007].
approach three: Loewner realization via contour integration

Minimal Realization via Rational Contour Integrals for m eigenvalues

- Let $r \geq m$, and select interpolation points and directions:

 left points, directions: $z_1, \ldots, z_r \in \mathbb{C} \setminus \Omega$, $w_1, \ldots, w_r \in \mathbb{C}^n$

 right points, directions: $z_{r+1}, \ldots, z_{2r} \in \mathbb{C} \setminus \Omega$, $w_{r+1}, \ldots, w_{2r} \in \mathbb{C}^n$

- Use contour integrals to compute the left and right interpolation data:

 left interpolation data: $f_1 = H(z_1)^T w_1$, \ldots, $f_r = H(z_r)^T w_r$

 right interpolation data: $f_{r+1} = H(z_{r+1}) w_{r+1}$, \ldots, $f_{2r} = H(z_{2r}) w_{2r}$

 $H(z_j) w_j = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{1}{z_j - z} T(z)^{-1} w_j \, dz.$

- Construct *Loewner* and *shifted Loewner* matrices from this data, just as in the Data-Driven Rational Interpolation method:

 $C_r = [f_{r+1}, \ldots, f_{2r}]$ \hspace{1cm} $B_r = [f_1, \ldots, f_r]^T$

 $A_r = \text{shifted Loewner matrix}$ \hspace{1cm} $E_r = \text{Loewner matrix}$

- If $r = m$, then $V(zI - \Lambda)^{-1} U^* = C_r (A_r - zE_r)^{-1} B_r$: compute eigenvalues!

 If $r > m$, use SVD truncation / minimum realization techniques to reduce dimension; cf. [Mayo & Antoulas 2007].
Example. \(T(\lambda) = \lambda I - A - e^{-\lambda}I \), where \(A \) is symmetric with \(n = 1000 \); eigenvalues of \(A = \{-1, -2, \ldots, -n\} \).

- Eigenvalues of full \(T(\lambda) \)
- 20 interpolation points in \(2 + [-6i, 6i] \)
- Eigenvalues of minimal \((m = 4) \) matrix pencil
- Contour of integration (circle)
 Trapezoid rule uses \(N = 25, 50, 100, \) and 200 interpolation points
Example. $T(\lambda) = \lambda I - A - e^{-\lambda} I$, where A is symmetric with $n = 1000$; eigenvalues of $A = \{-1, -2, \ldots, -n\}$.

4 eigenvalues in Ω
\Rightarrow rank(\mathbb{L}) = 4

Cf. [Beyn 2012], [Güttel & Tisseur 2017] for $f(z) = z^k$.
For rank detection for Loewner matrices, see [Hokanson 2018+].
Transient Dynamics
for
Dynamical Systems
with Delays

a case study of pseudospectral analysis
We often care about *eigenvalues* because we seek insight about *dynamics*.
We often care about eigenvalues because we seek insight about dynamics.

Start with the simple scalar system

\[x'(t) = \alpha x(t), \]

with solution

\[x(t) = e^{t\alpha} x(0). \]

If \(\text{Re} \alpha < 0 \), then \(|x(t)| \to 0 \) monotonically as \(t \to \infty \).
We often care about eigenvalues because we seek insight about dynamics.

Now consider the n-dimensional system

$$x'(t) = Ax(t)$$

with solution

$$x(t) = e^{tA}x(0).$$

If $\text{Re}\lambda < 0$ for all $\lambda \in \sigma(A)$, then $\|x(t)\| \to 0$ asymptotically as $t \to \infty$, for some $t^* \in (0, \infty)$.

\[
A = \begin{bmatrix}
-1 & 0 \\
100 & -2
\end{bmatrix}
\]
We often care about *eigenvalues* because we seek insight about *dynamics*.

Now consider the n-dimensional system

$$x'(t) = Ax(t)$$

with solution

$$x(t) = e^{tA}x(0).$$

If $\text{Re}\lambda < 0$ for all $\lambda \in \sigma(A)$, then $\|x(t)\| \to 0$ asymptotically as $t \to \infty$, but it is possible that $\|x(t_*)\| \gg \|x(0)\|$ for some $t_* \in (0, \infty)$.

\[
A = \begin{bmatrix}
-1 & 0 \\
100 & -2
\end{bmatrix}
\]
why transients matter

Often the linear dynamical system \(\mathbf{x}'(t) = A\mathbf{x}(t) \) arises from linear stability analysis for a fixed point of a nonlinear system

\[
\mathbf{y}'(t) = \mathbf{F}(\mathbf{y}(t), t).
\]

For example,

\[
\mathbf{y}'(t) = A\mathbf{y}(t) + \frac{1}{20}\mathbf{y}(t)^2.
\]

In this example, linear transient growth feeds the nonlinearity. Such behavior can provide a mechanism for transition to turbulence in fluid flows; see, e.g., [Butler & Farrell 1992], [Trefethen et al. 1993].
detecting the potential for transient growth

One can draw insight about transient growth from the numerical range (field of values) and ε-pseudospectra of A:

$$\sigma_\varepsilon(A) = \{z \in \mathbb{C} : \|(zI - A)^{-1}\| > 1/\varepsilon\}$$

$$= \{z \in \mathbb{C} : z \in \sigma(A + E) \text{ for some } E \in \mathbb{C}^{n \times n} \text{ with } \|E\| < \varepsilon\}$$

For upper and lower bounds on $\|x(t)\|$, see [Trefethen & E. 2005], e.g.,

$$\sup_{t \geq 0} \|e^{tA}\| \geq \sup_{z \in \sigma_\varepsilon(A)} \frac{\text{Re } z}{\varepsilon}.$$

If $\sigma_\varepsilon(A)$ extends more than ε across the imaginary axis, $\|e^{tA}\|$ grows transiently.
detecting the potential for transient growth

One can draw insight about transient growth from the numerical range (field of values) and \(\varepsilon \)-pseudospectra of \(A \):

\[
\sigma_\varepsilon(A) = \{ z \in \mathbb{C} : \|(zI - A)^{-1}\| > 1/\varepsilon \} = \{ z \in \mathbb{C} : z \in \sigma(A + E) \text{ for some } E \in \mathbb{C}^{n \times n} \text{ with } \|E\| < \varepsilon \}
\]

For upper and lower bounds on \(\|x(t)\| \), see [Trefethen & E. 2005], e.g.,

\[
\sup_{t \geq 0} \|e^{tA}\| \geq \sup_{z \in \sigma_\varepsilon(A)} \frac{\text{Re } z}{\varepsilon}.
\]

If \(\sigma_\varepsilon(A) \) extends more than \(\varepsilon \) across the imaginary axis, \(\|e^{tA}\| \) grows transiently.

Pseudospectra can guarantee that some \(x(0) \) induce transient growth.
Two ways to look at pseudospectra

Two equivalent definitions give two distinct perspectives.

perturbed eigenvalues

\[\sigma_\varepsilon(A) = \{ z \in \mathbb{C} : z \in \sigma(A + E) \text{ for some } E \in \mathbb{C}^{n \times n} \text{ with } \|E\| < \varepsilon \} \]

norms of resolvents

\[\sigma_\varepsilon(A) = \{ z \in \mathbb{C} : \| (zI - A)^{-1} \| > 1/\varepsilon \} \]
two ways to look at pseudospectra

Two *equivalent* definitions give two distinct perspectives.

perturbed eigenvalues

\[
\sigma_\varepsilon(A) = \{ z \in \mathbb{C} : z \in \sigma(A + E) \text{ for some } E \in \mathbb{C}^{n \times n} \text{ with } \|E\| < \varepsilon \}
\]

- \(\sigma_\varepsilon(A) \) contains the eigenvalues of all matrices with distance \(\varepsilon \) of \(A \).
- Ideal for assessing *asymptotic stability of uncertain systems*: Is some matrix near \(A \) unstable?
- Why consider all \(E \in \mathbb{C}^{n \times n} \)? *Structured pseudospectra* further restrict \(E \) (real, Toeplitz, etc.).
 [Hinrichsen & Pritchard], [Karow], [Rump]

norms of resolvents

\[
\sigma_\varepsilon(A) = \{ z \in \mathbb{C} : \| (zI - A)^{-1} \| > 1/\varepsilon \}
\]

- \(\sigma_\varepsilon(A) \) is bounded by \(1/\varepsilon \) level sets of the resolvent norm.
- Ideal for assessing *transient behavior of stable systems*: \(\|e^tA\| > 1 \) or \(\|A^k\| > 1 \)?
- Rooted in semigroup theory: based on the solution operator for the dynamical system; structure of \(A \) plays no role.

These perspectives match for \(x'(t) = Ax(t) \), but not for more complicated systems.
Two ways to look at pseudospectra

Two *equivalent* definitions give two distinct perspectives.

perturbed eigenvalues

\[\sigma_{\varepsilon}(A) = \{ z \in \mathbb{C} : z \in \sigma(A + E) \text{ for some } E \in \mathbb{C}^{n \times n} \text{ with } \|E\| < \varepsilon \} \]

- \(\sigma_{\varepsilon}(A) \) contains the eigenvalues of all matrices with distance \(\varepsilon \) of \(A \).
- Ideal for assessing *asymptotic stability of uncertain systems*: Is some matrix *near* \(A \) unstable?
- Why consider all \(E \in \mathbb{C}^{n \times n} \)? *Structured pseudospectra* further restrict \(E \) (real, Toeplitz, etc.).

norms of resolvents

\[\sigma_{\varepsilon}(A) = \{ z \in \mathbb{C} : \| (zI - A)^{-1} \| > 1/\varepsilon \} \]

- \(\sigma_{\varepsilon}(A) \) is bounded by \(1/\varepsilon \) level sets of the resolvent norm.
- Ideal for assessing *transient behavior of stable systems*: \(\|e^{tA}\| > 1 \) or \(\|A^k\| > 1 \)?
- Rooted in semigroup theory: based on the solution operator for the dynamical system; structure of \(A \) plays no role.
Two ways to look at pseudospectra

Two *equivalent* definitions give two distinct perspectives.

Perturbed Eigenvalues

\[\sigma_\varepsilon(A) = \{ z \in \mathbb{C} : z \in \sigma(A + E) \text{ for some } E \in \mathbb{C}^{n \times n} \text{ with } \|E\| < \varepsilon \} \]

- \(\sigma_\varepsilon(A) \) contains the eigenvalues of all matrices with distance \(\varepsilon \) of \(A \).
- Ideal for assessing *asymptotic stability of uncertain systems*: Is some matrix near \(A \) unstable?
- Why consider all \(E \in \mathbb{C}^{n \times n} \)? *Structured pseudospectra* further restrict \(E \) (real, Toeplitz, etc.). [Hinrichsen & Pritchard], [Karow], [Rump]

Norms of Resolvents

\[\sigma_\varepsilon(A) = \{ z \in \mathbb{C} : \| (zI - A)^{-1} \| > 1/\varepsilon \} \]

- \(\sigma_\varepsilon(A) \) is bounded by \(1/\varepsilon \) level sets of the resolvent norm.
- Ideal for assessing *transient behavior of stable systems*: \(\| e^{tA} \| > 1 \) or \(\| A^k \| > 1 \)?
- Rooted in semigroup theory: based on the solution operator for the dynamical system; structure of \(A \) plays no role.

These perspectives match for \(x'(t) = Ax(t) \), but not for more complicated systems.
scalar delay equations and the nonlinear eigenvalue problem

We shall apply these ideas to explore the potential for *transient growth in solutions to stable delay differential equations.*

Solutions of scalar systems \(x'(t) = \alpha x(t) \) behave monotonically: \(|x(t)| = e^{t \operatorname{Re} \alpha} |x(0)| \). What about scalar delay equations?

\[
x'(t) = \alpha x(t) + \beta x(t - 1)
\]

Using the techniques seen earlier, we associate this system with the NLEVP

\[
(\lambda - \alpha)e^\lambda = \beta,
\]

with infinitely many eigenvalues given by branches of the Lambert-\(W \) function:

\[
\lambda_k = \alpha + W_k(\beta e^{-\alpha}).
\]
We shall apply these ideas to explore the potential for *transient growth in solutions to stable delay differential equations.*

Solutions of scalar systems \(x'(t) = \alpha x(t) \) behave monotonically: \(|x(t)| = e^{t \Re \alpha} |x(0)| \). What about scalar delay equations?

\[
\begin{align*}
\lambda_k &= \alpha + W_k(\beta e^{-\alpha}).
\end{align*}
\]
We shall apply these ideas to explore the potential for transient growth in solutions to stable delay differential equations. Solutions of scalar systems $x'(t) = \alpha x(t)$ behave monotonically: $|x(t)| = e^{t \text{Re} \alpha} |x(0)|$. What about scalar delay equations?

$$\{\lambda_k\} \text{ for } \begin{cases} \alpha = 3/4 \\ \beta = -1 \end{cases}$$

$x'(t) = \alpha x(t) + \beta x(t-1) \implies \lambda_k = \alpha + W_k(\beta e^{-\alpha})$.
Conventional eigenvalue-based stability analysis reveals the \((\alpha, \beta)\) combinations that yield \textit{asymptotically stable} solutions.

Such \textit{stability charts} are standard tools for studying stability of parameter-dependent delay systems.
pseudospectra for nonlinear eigenvalue problems

Consider the nonlinear eigenvalue problem $T(\lambda)v = 0$ with

$$T(\lambda) = \sum_{j=1}^{m} f_j(\lambda) A_j.$$

For $p, q \in [1, \infty]$ and weights $w_1, \ldots, w_m \in (0, \infty]$, define the norm

$$\|(E_1, \ldots, E_m)\|_{p,q} = \left\| \begin{bmatrix} w_1\|E_1\|_q & \ldots & \|E_m\|_q \end{bmatrix} \right\|_p.$$

Given this way of measuring a perturbation to $T(\lambda)$, [MGWN 2006] define

$$\sigma_\varepsilon(T) = \left\{ z \in \mathbb{C} : z \in \sigma \left(\sum_{j=1}^{m} f_j(\lambda) (A_j + E_j) \right) \text{ for some } E_1, \ldots, E_m \in \mathbb{C}^{n \times n} \text{ with } \|(E_1, \ldots, E_m)\|_{p,q} < \varepsilon \right\}.$$
pseudospectra for the scalar delay equation

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]

\[T(\lambda) = \lambda - \alpha - \beta e^{-\lambda}. \]

MGWN ε-pseudospectra for $\alpha = \frac{3}{4}$ and $\beta = -1$, with perturbation norm given by $q \in [1, \infty]$ and $p = \infty$, and $w_1 = w_2 = 1$.
pseudospectra for the scalar delay equation

\[x'(t) = -x(t) + 0 \cdot x(t - 1) \]

\[T(\lambda) = \lambda + 1 \]

\[T(\lambda) = \lambda + 1 - 0 e^{-\lambda} \]

MGWN ε-pseudospectra with $p = \infty$: structure affects pseudospectra.
To better understand transient behavior, just integrate the differential equation:

\[
x'(t) = \alpha x(t) + \beta x(t - 1)
\]

history: \(x(t - 1) = u(t) \) for \(t \in [0, 1] \).
To better understand transient behavior, just integrate the differential equation:

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]

history: \(x(t - 1) = u(t) \) for \(t \in [0, 1] \).

Integrate

\[x'(t) = \alpha x(t) + \beta u(t) \]

to get, for \(t \in [0, 1] \),

\[x(t) = e^{t\alpha} x(0) + \beta \int_0^t e^{(t-s)\alpha} u(s) \, ds \]

\[= e^{t\alpha} u(1) + \beta \int_0^t e^{(t-s)\alpha} u(s) \, ds. \]
To better understand transient behavior, just integrate the differential equation:

\[
x'(t) = \alpha x(t) + \beta x(t - 1)
\]

history: \(x(t - 1) = u(t) \) for \(t \in [0, 1] \).

Integrate

\[
x'(t) = \alpha x(t) + \beta u(t)
\]

to get, for \(t \in [0, 1] \),

\[
x(t) = e^{t\alpha} x(0) + \beta \int_0^t e^{(t-s)\alpha} u(s) \, ds
\]

\[
= e^{t\alpha} u(1) + \beta \int_0^t e^{(t-s)\alpha} u(s) \, ds.
\]

This operation maps the history \(u \) to the solution \(x \) for \(t \in [0, 1] \):

\[
u \in C([0, 1]) \quad \mapsto \quad x \in C([0, 1]).
\]
Define the solution operator $K : C[0, 1] \rightarrow C[0, 1]$ via

$$x(t) = (Ku)(t) = e^{t\alpha} u(1) + \beta \int_0^t e^{(t-s)\alpha} u(s) \, ds, \quad t \in [0, 1].$$
Define the solution operator \(K : C[0, 1] \to C[0, 1] \) via

\[
x(t) = (K u)(t) = e^{t \alpha} u(1) + \beta \int_0^t e^{(t-s) \alpha} u(s) \, ds,
\]
\(t \in [0, 1] \).

Define:

\[
x^{(0)} := u
\]

To advance \(t \) by 1 unit, apply \(K \):

\[
x^{(1)} := K x^{(0)}
\]

To advance \(t \) by 2 units, apply \(K^2 \):

\[
x^{(2)} := K x^{(1)} = K^2 x^{(0)}
\]

\[
\vdots
\]

To advance \(t \) by \(m \) units, apply \(K^m \):

\[
x^{(m)} := K x^{(m-1)} = K^m x^{(0)}
\]

\[
x_m = x(t) \big|_{t \in [m-1, m]}
\]

\(t \in [−1, 0] \)

\(t \in [0, 1] \)

\(t \in [1, 2] \)

\(t \in [m − 1, m] \)
the solution operator

Define the \textit{solution operator} $K : C[0, 1] \to C[0, 1]$ via

\[
x(t) = (Ku)(t) = e^{t\alpha}u(1) + \beta \int_0^t e^{(t-s)\alpha} u(s) \, ds, \quad t \in [0, 1].
\]

Define: \quad $x^{(0)} := u$

to advance t by 1 unit, apply K: \quad $x^{(1)} := K x^{(0)}$
to advance t by 2 units, apply K^2: \quad $x^{(2)} := K x^{(1)} = K^2 x^{(0)}$

\[\vdots\]
to advance t by m units, apply K^m: \quad $x^{(m)} := K x^{(m-1)} = K^m x^{(0)} \quad t \in [m-1, m]$

\[x_m = x(t)_{|t \in [m-1, m]} \]

to $t \in [-1, 0]$
to $t \in [0, 1]$
to $t \in [1, 2]$

View the delay system as a \textit{discrete-time dynamical system} over 1-unit time intervals:

\[x^{(m)} = K^m x^{(0)}.\]
We discretize the solution operator using a Chebyshev pseudospectral method based on [Trefethen 2000]; see [Bueler 2007], [Jarlebring 2008].

\[x(t_j) \approx x_j := e^{t_j \alpha} u_0 + \sum_{k=0}^{N} \beta w_{j,k} u_k, \quad w_{j,k} := \int_0^{t_j} e^{(t_j-s) \alpha} \ell_k(s) \, ds \]

\[
\begin{bmatrix}
 x_0 \\
 x_1 \\
 \vdots \\
 x_N
\end{bmatrix} =
\begin{bmatrix}
 e^{t_0 \alpha} & 0 & \cdots & 0 \\
 e^{t_1 \alpha} & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 e^{t_N \alpha} & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
 u_0 \\
 u_1 \\
 \vdots \\
 u_N
\end{bmatrix}
+ \beta
\begin{bmatrix}
 w_{0,0} & w_{0,1} & \cdots & w_{0,N} \\
 w_{1,0} & w_{1,1} & \cdots & w_{1,N} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{N,0} & w_{N,1} & \cdots & w_{N,N}
\end{bmatrix}
\begin{bmatrix}
 u_0 \\
 u_1 \\
 \vdots \\
 u_N
\end{bmatrix}
\]

\[E_N(\alpha) \quad \text{and} \quad W_N(\alpha) \]
We discretize the solution operator using a Chebyshev pseudospectral method based on [Trefethen 2000]; see [Bueler 2007], [Jarlebring 2008].

\[
x(t_j) \approx x_j := e^{t_j \alpha} u_0 + \sum_{k=0}^{N} \beta w_{j,k} u_k,
\]

\[
w_{j,k} := \int_0^{t_j} e^{(t_j-s) \alpha} \ell_k(s) \, ds
\]

\[
\begin{bmatrix}
x_0 \\
x_1 \\
\vdots \\
x_N
\end{bmatrix} =
\begin{bmatrix}
e^{t_0 \alpha} & 0 & \cdots & 0 \\
e^{t_1 \alpha} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
e^{t_N \alpha} & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
u_0 \\
u_1 \\
\vdots \\
u_N
\end{bmatrix} + \beta
\begin{bmatrix}
w_{0,0} & w_{0,1} & \cdots & w_{0,N} \\
w_{1,0} & w_{1,1} & \cdots & w_{1,N} \\
\vdots & \vdots & \ddots & \vdots \\
w_{N,0} & w_{N,1} & \cdots & w_{N,N}
\end{bmatrix}
\begin{bmatrix}
u_0 \\
u_1 \\
\vdots \\
u_N
\end{bmatrix}
\]

\[
K_N := E_N(\alpha) + \beta W_N(\alpha)
\]

\[
x^{(1)} := K_N u
\]

\[
x^{(m)} := K_N^m u
\]
approaches to transient analysis of delay equations

- Jacob Stroh [2006], in a master’s thesis advised by Ed Bueler, computes L^2-pseudospectra of Chebyshev discretizations of the compact solution operator and considers nonnormality as a function of a time-varying coefficient in the delay term: *our approach follows closely.*

- Green & Wagenknecht [2006], in their paper about perturbation-based pseudospectra for delay equations, describe computing the pseudospectra of the generator for the solution semigroup as a way of gauging transient behavior; for relevant semigroup theory, see, e.g., [Engel & Nagel 2000].

- Solution operator approach converts a *finite dimensional nonlinear problem* into an *infinite dimensional linear problem*, akin to the *infinite Arnoldi algorithm* [Jarlebring, Meerbergen, Michiels 2010, 2012, 2014].
To study convergence, consider $\alpha = 0, \beta = -1$: $x'(t) = -x(t - 1)$.

$\mu_j^{(N)}$: the jth largest magnitude eigenvalue of K_N

e^{λ_j}: λ_j is the jth rightmost eigenvalue of the NLEVP

We generally use $N = 64$ for our computations throughout what follows.
nonconvergence of the L^2 pseudospectra of the solution operator

Eigenvalues converge, but the $L^2[0,1]$ pseudospectra of K_N do not: the departure from normality increases with N!
the problem with the L^2 norm

Problem: The $L^2(0,1)$ norm does not measure transient growth of $|x(t)|$.

One can easily find $u(x)$ such that $\|u\|_{L^2[0,1]} \ll 1$ but $\|x\|_{L^2[0,1]} \geq 1$.

Let $\alpha = 0$, $\beta = -1$: $x'(t) = -x(t-1) \implies x(t) = u(1) - \int_0^t u(s) \, ds$.
the problem with the L^2 norm

Problem: *The $L^2(0,1)$ norm does not measure transient growth of $|x(t)|$.*

One can easily find $u(x)$ such that $\|u\|_{L^2[0,1]} \ll 1$ but $\|x\|_{L^2[0,1]} \geq 1$.

Let $\alpha = 0$, $\beta = -1$: $x'(t) = -x(t - 1) \implies x(t) = u(1) - \int_0^t u(s) \, ds$.
pseudospectra and transient growth of matrix powers

Since we care about the largest value \(|x(t)| \) can take, we should really study

\[
\|x^{(m)}\|_{L\infty},
\]

and thus the \(\varepsilon \)-pseudospectrum \(\sigma_\varepsilon(K_N) \) defined using the \(\infty \)-norm:

\[
\sigma_\varepsilon(K_N) := \{ z \in \mathbb{C} : \|(zI - K_N)^{-1}\|_\infty > 1/\varepsilon \} \\
:= \{ z \in \mathbb{C} : z \in \sigma(K_N + E) \text{ for some } E \in \mathbb{C}^{n \times n} \text{ with } \|E\|_\infty < \varepsilon \}.
\]
Since we care about the largest value $|x(t)|$ can take, we should really study

$$\|x^{(m)}\|_{L^\infty},$$

and thus the ε-pseudospectrum $\sigma_\varepsilon(K_N)$ defined using the ∞-norm:

$$\sigma_\varepsilon(K_N) := \{z \in \mathbb{C} : \|(zI - K_N)^{-1}\|_\infty > 1/\varepsilon\}$$

$$:= \{z \in \mathbb{C} : z \in \sigma(K_N + E) \text{ for some } E \in \mathbb{C}^{n \times n} \text{ with } \|E\|_\infty < \varepsilon\}.$$

Even in Banach spaces, pseudospectra give lower bounds on transient growth; see, e.g., [Trefethen & E., 2005].

$$\sup_{m \geq 0} \|K^m\| \geq \sup_{z \in \sigma_\varepsilon(K)} \frac{|z| - 1}{\varepsilon}$$

If $\sigma_\varepsilon(K)$ extends more than ε outside the unit disk, $\|K^m\|$ grows transiently.

Limitations: [Greenbaum & Trefethen 1994], [Ransford et al. 2007, 2009, 2011]
stability versus solution operator norm

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]

Stable choices of the \((\alpha, \beta)\) parameters

unstable \((\alpha, \beta)\) pairs

stable \((\alpha, \beta)\) pairs
stability versus solution operator norm

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]

Level sets: \(\rho(K) = 0.1, 0.2, \ldots, 1.0 \)
stability versus solution operator norm

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]

Level sets: \(\|K\| = 0.5, 1.0, \ldots, 4.5 \)
stability versus solution operator norm

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]

Superimposed level sets for \(\rho(K) \) and \(\|K\| \)
stability versus solution operator norm

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]

Superimposed level sets for \(\rho(K) \) and \(\|K\| \)
solution matrix pseudospectra (∞-norm)

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]

\[\alpha = 1 \]
\[\beta = -1 \]
\[\rho(K) = 1 \]
\[\|K\|_\infty = 4.43632 \]
solution matrix pseudospectra (∞-norm)

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]

\[\alpha = 0.98995 \quad \beta = -0.99000 \quad \rho(K) = 0.99000 \quad \|K\|_\infty = 4.38204 \]
solution matrix pseudospectra (∞-norm)

$$x'(t) = \alpha x(t) + \beta x(t - 1)$$

$\alpha = 0.98995$
$\beta = -0.90000$
$\rho(K) = 0.90000$
$\|K\|_{\infty} = 3.90135$
solution matrix pseudospectra (∞-norm)

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]

\[\alpha = 0.98995 \quad \beta = -0.99000 \quad \rho(K) = 0.99000 \quad ||K||_{\infty} = 4.38204 \]

\[\alpha = 0.98995 \quad \beta = -0.90000 \quad \rho(K) = 0.90000 \quad ||K||_{\infty} = 3.90135 \]
solution operator: transient growth

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]
solution operator: transient growth

\[x'(t) = \alpha x(t) + \beta x(t - 1) \]

As \(\alpha \uparrow 1 \) and \(\beta \downarrow -1 \), solutions exhibit arbitrary transient growth, but slowly.
can scalar equations exhibit stronger transients?

Is faster transient growth possible in a scalar equation if we allow \textit{multiple synchronized delays}?

\[
x'(t) = c_0 x(t) + c_1 x(t - 1) + c_2 x(t - 2) + \cdots + c_d x(t - d).
\]
Can scalar equations exhibit stronger transients?

Is faster transient growth possible in a scalar equation if we allow *multiple synchronized delays*?

\[x'(t) = c_0 x(t) + c_1 x(t - 1) + c_2 x(t - 2) + \cdots + c_d x(t - d). \]

Key: Look for solutions of the form \(x(t) = t^d e^{\lambda t} \).
can scalar equations exhibit stronger transients?

Is faster transient growth possible in a scalar equation if we allow *multiple synchronized delays*?

\[x'(t) = c_0 x(t) + c_1 x(t - 1) + c_2 x(t - 2) + \cdots + c_d x(t - d). \]

Key: *Look for solutions of the form* \(x(t) = t^d e^{\lambda t} \).

One can show that \(x(t) = t^d e^{\lambda t} \) is a solution if and only if \(c_0, c_1, \ldots, c_d \) solve the Vandermonde linear system

\[
\begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & \cdots & d \\
0 & 1 & 4 & \cdots & d^2 \\
& \vdots & \vdots & \ddots & \vdots \\
0 & 1 & 2^d & \cdots & d^d
\end{pmatrix}
\begin{pmatrix}
c_0 \\
e^{-\lambda} c_1 \\
e^{-2\lambda} c_2 \\
\vdots \\
e^{-d\lambda} c_d
\end{pmatrix}
=
\begin{pmatrix}
\lambda \\
-1 \\
0 \\
\vdots \\
0
\end{pmatrix}.
\]
Commensurate delays can give much larger pseudospectra

\[x'(t) = c_0 x(t) + c_1 x(t - 1) + \cdots + c_d x(t - d) \]
Commensurate delays can induce strong transients

\[x'(t) = c_0 x(t) + c_1 x(t - 1) + c_2 x(t - 2) + \cdots + c_d x(t - d) \]

Initial data:
\[x(t) = -1 + 2e^{10t} \]
for \(t \leq 0 \)

\[c_0 = 0.8946 \]
\[c_1 = -0.9000 \]
\[d = 1 \]

\[c_0 = 1.3946 \]
\[c_1 = -1.8000 \]
\[c_2 = 0.4050 \]
\[d = 2 \]

\[c_0 = 1.7280 \]
\[c_1 = -2.7000 \]
\[c_2 = 1.2150 \]
\[c_3 = -0.2430 \]
\[d = 3 \]

\[c_0 = 1.9780 \]
\[c_1 = -3.9600 \]
\[c_2 = 2.4300 \]
\[c_3 = -0.9720 \]
\[c_4 = 0.1640 \]
\[d = 4 \]
With commensurate delays, solutions to scalar equations can exhibit significant transient growth very quickly in time.

\[x'(t) = c_0 x(t) + c_1 x(t - 1) + \cdots + c_d x(t - d) \]
rational interpolation for nlevps

Rational / Loewner techniques motivated by algorithms from model reduction

- **Structure Preserving Rational Interpolation**: iteratively improve projection subspaces via interpolation points and directions.
- **Data-Driven Rational Interpolation Matrix Pencils**: reduce nonlinear problem to linear matrix pencil with tangential interpolation property.
- **Minimal Realization via Rational Contour Integrals**: isolates a transfer function for a linear system, recover via Loewner minimal realization techniques.

transients for delay equations

Solutions to *scalar* delay equations can exhibit strong transient growth.

- **Finite dimensional nonlinear problem** ⇒ **infinite dimensional linear problem**
- Pseudospectral theory applies to the linear problem, *but the choice of norm is important*.
- Chebyshev collocation keeps the discretization matrix size small.
- Adding commensurate delays enables a *faster rate* of initial transient growth.