Thursday 20 March 2014.

Instructions:

1. Time limit: 2 uninterrupted hours.

2. There are three questions worth a total of 100 points.

3. You may not use any outside resources, calculators, or MATLAB.

4. Please answer the questions thoroughly and justify all your answers.
 Show all your work to maximize partial credit.

5. Print your name on the line below:

 __

6. Time started: ____________________ Time completed: ____________________
1. [28 points: 7 points per part]

Consider this circuit, a two-compartment model of a neuron where the current flow is resisted by intercellular material (R_i), the cell membrane (R_m), and a myelin sheath that imposes both transverse resistance (R_s) and axial resistance (R_a).

Please work through the four modeling steps outlined in class for this circuit. Be sure to specify all entries in the matrices and vectors.

(a) Write the voltage drops, e, in terms of the potentials, x, as $e = v - A x$.

(b) Apply Ohm’s Law to write the currents, y, in terms of the voltage drops, e, as $y = Ke$.

(c) Express Kirchhoff’s Current Law via $A^t y = 0$.

(d) Compute $A^t KA$.

To expedite this calculation, you may use that (1) $A^t KA$ is a symmetric matrix; and (2) premultiplication by the diagonal matrix K scales the rows:

$$KA = \begin{bmatrix} k_1 & & k_2 & & k_m \\ & \ddots & & \ddots & \\ & & k_m \end{bmatrix} \begin{bmatrix} \text{ROW 1} \\ \text{ROW 2} \\ \vdots \\ \text{ROW m} \end{bmatrix} = \begin{bmatrix} k_1 \times \text{ROW 1} \\ k_2 \times \text{ROW 2} \\ \vdots \\ k_m \times \text{ROW m} \end{bmatrix}.$$

[from Steve Cox]
2. [40 points: (a)=6; (b)=4; (c)=4; (d)=6; (e)=12; (f)=4; (g)=4 points]

(a) State the Fundamental Theorem of Linear Algebra for the matrix $A \in \mathbb{C}^{m \times n}$. (Your answer should refer to each of the spaces $\mathcal{R}(A)$, $\mathcal{R}(A^*)$, $\mathcal{N}(A)$, and $\mathcal{N}(A^*)$, and should also comment on orthogonality of these spaces.)

(b) Suppose we wish to solve the equation $Ax = f$ for unknown x. Under what condition on f will there exist a solution? When a solution exists, under what condition will it be unique?

(c) Suppose $A \in \mathbb{C}^{4 \times 5}$. Considering the size of A alone: what are the maximum and minimum dimensions of $\mathcal{R}(A)$, $\mathcal{R}(A^*)$, $\mathcal{N}(A)$, and $\mathcal{N}(A^*)$?

For the rest of the problem, consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 0 & 1 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 1 & 0 & 2 & 0 \end{bmatrix}$$

(d) Compute an echelon form A_{red} of A. What are the pivot rows? What are the pivot columns?

(e) Compute bases for the four fundamental subspaces, $\mathcal{R}(A)$, $\mathcal{R}(A^*)$, $\mathcal{N}(A)$, and $\mathcal{N}(A^*)$.

(f) Suppose we want to write down all solutions to $Ax = f$, with $f = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

Here is one solution x_R that satisfies $Ax_R = f$:

$$x_R = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

(Notice that $x_R \in \mathcal{R}(A^*)$.)

Write down an expression for infinitely many solutions x to $Ax = f$ for this f. Write these solutions as $x = x_R + v$, where you should specify a subspace from which v comes.

(g) Of the infinitely many solutions identified in part (f), which one minimizes $\|x\| = \sqrt{x^*x}$? Explain.
3. [32 points: (a)=8; (b)=5; (c)=5; (d)=7; (e)=7 points]

(a) Suppose B is a diagonalizable matrix with spectral representation $B = \sum_{j=1}^{n} \phi_j P_j$ and eigenvalues ϕ_1, \ldots, ϕ_n, and let $x^{(k)} = B^k x(0)$.

(i) How will $\|x^{(k)}\|$ behave as $k \to \infty$ if all eigenvalues of B satisfy $|\phi_j| < 1$?

(ii) Suppose $|\phi_1| > 1$ and $|\phi_j| < 1$ for $j = 2, \ldots, n$. How will $\|x^{(k)}\|$ behave as $k \to \infty$?

Our study of eigenvalues was motivated by analysis of the dynamical system

$x'(t) = Ax(t), \quad x(0) = x_0.$

Suppose A is a diagonal matrix and, for simplicity, assume all its eigenvalues are real, negative numbers. Hence $e^{tA} \to 0$ as $t \to \infty$ for all eigenvalues λ of A, and so $x(t) \to 0$ as $t \to \infty$. Such a system is stable.

In class we saw the solution $x(t)$ is given via the matrix exponential: $x(t) = e^{tA}x(0)$. However, this approach is computationally expensive. In most applications we settle for a quicker approximation that only requires us to compute matrix-vector products.

In this problem we study two approaches. If $\alpha \in \mathbb{R}$ is a scalar, recall from calculus that

$$e^{t\alpha} = \lim_{h \to 0} (1 + h\alpha)^{t/h} = \lim_{h \to 0} \left(\frac{1}{1 - h\alpha} \right)^{t/h}.$$

The forward and backward Euler methods build similar approximations to e^{tA}. For some fixed time-step $h > 0$:

$$e^{tA} \approx (I + hA)^{t/h} \quad \text{ (forward Euler)}$$

$$e^{tA} \approx \left((I - hA)^{-1} \right)^{t/h} \quad \text{ (backward Euler)}.$$

Thus at time $t_k = hk$, we approximate $x^{(k)} \approx x(t_k) = x(kh)$ via

$$x^{(k)} = (I + hA)^k x(0) \quad \text{ (forward Euler)}$$

$$x^{(k)} = ((I - hA)^{-1})^k x(0) \quad \text{ (backward Euler)}.$$

(b) The matrix $(I + hA)$ has the same eigenvectors as A. What are its eigenvalues, in terms of the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A?

(c) The matrix $(I - hA)^{-1}$ has the same eigenvectors as A. What are its eigenvalues, in terms of the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A?

Suppose the eigenvalues of A satisfy $\lambda_1 \leq \cdots \leq \lambda_n < 0$, which ensures $x(t) = e^{tA}x(0) \to 0$ as $t \to \infty$. We want to see if the forward and backward Euler approximations capture the same behavior, i.e., if $x^{(k)} \to 0$ as $k \to \infty$.

(d) First consider the backward Euler method. In this case, $x^{(k)} \to 0$ for any choice of h.

Explain why this is the case, in light of the eigenvalues of $(I - hA)^{-1}$.

(e) For the forward Euler method, choosing h too large will cause $\|x^{(k)}\| \to \infty$! Describe how h must relate to the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A in order to ensure that $x^{(k)} = (I + hA)^k x(0) \to 0$ as $k \to \infty$.

3