Second Order Differential Equations

Equivalent Forms; Initial Value Problems In general, second order differential equations take the form

$$\frac{d^2y}{dx^2} = f \left(x, y, \frac{dy}{dx}\right),$$

where $f(x, y, z)$ is a continuous function of the variables x, y and z in some region $\mathcal{R} \subset \mathbb{R}^3$ and is continuously differentiable with respect to y and z throughout that region.

If we define $z = \frac{dy}{dx}$, then we can write the above equation equivalently as a system of two (coupled) first order equations:

$$\frac{dy}{dx} = z; \quad \frac{dz}{dx} = f(x, y, z).$$

Written in this form and drawing on experience with first order equations, we would expect to have to give initial values

$$y(x_0) = y_0, \quad z(x_0) = z_0,$$

in order to specify an initial value problem. Going back to the second order equation, this means we need to give

$$y(x_0) = y_0, \quad \frac{dy}{dx}(x_0) = z_0; \quad \text{equivalently:} \quad \frac{dy}{dx}(x_0) = y_1,$$

in order to specify an initial value problem for it.

General Solutions We say that an expression $y(x, c_1, c_2)$ is a general solution for the second order differential equation above if, as a function of x, it satisfies the differential equation, and, given initial values as above at a point x_0, with (x_0, y_0, y_1) in
the region R where \(f(x, y, z) \) has the required properties, we can solve the equations

\[
y(x_0, c_1, c_2) = y_0, \quad \frac{dy}{dx}(x_0, c_1, c_2) = y_1
\]

for \(c_1 \) and \(c_2 \) to satisfy that initial value problem.

Example 1 Consider the second order differential equation

\[
\frac{d^2 y}{dx^2} = \frac{2}{x} \frac{dy}{dx} - \frac{2}{x^2} y
\]

in the region \(x > 0 \), and let us try to find solutions of the form \(y = x^r \). Substituting, we have

\[
r(r - 1) x^{r-2} = 2r x^{r-2} - 2x^{r-2}
\]

or

\[
x^{r-2} (r^2 - 3r + 2) = 0.
\]

Since \(x^{r-2} \) is not identically zero, we need to solve the so-called **indicial equation**

\[
r^2 - 3r + 2 = 0 \quad \rightarrow \quad r = 2 \text{ or } r = 1.
\]

So we conclude that \(y(x) = x \) and \(y(x) = x^2 \) are solutions, which is easily checked out. Since the equation is linear with respect to \(y \) (if \(y \) and \(\hat{y} \) are solutions, so is any linear combination of the two) it then makes sense to try a general solution of the form

\[
y(x, c_1, c_2) = c_1 x + c_2 x^2.
\]

To satisfy initial conditions as specified above at \(x_0 > 0 \) we need

\[
c_1 x_0 + c_2 x_0^2 = y_0
\]

\[
c_1 + 2c_2 x_0 = y_1,
\]

a system of two linear algebraic equations. The determinant of the coefficients of \(c_1 \) and \(c_2 \) on the left hand side is \(2x_0^2 - x_0^2 = x_0^2 \neq 0 \) for \(x_0 \neq 0 \) so we conclude we can always obtain a unique
solution of these equations if \(x_0 \neq 0 \). We conclude therefore that
\(y(x, c_1, c_2) = c_1 x + c_2 x^2 \) is the general solution of the second
order differential equation \(\frac{d^2 y}{dx^2} = \frac{2}{x} \frac{dy}{dx} - \frac{2}{x^2} y \) for \(x \neq 0 \).

A General Method of Solution in the “Autonomous” Case

If our second order differential equation does not depend explicitly on \(x \), which is technically referred to as the autonomous, i.e., ”self-governing”, case, we can employ a transformation of
variables to reduce the second order equation to two first order
differential equations. Assuming the equation is
\[
\frac{d^2 y}{dx^2} = f(y, \frac{dy}{dx}),
\]

we let
\[
\frac{dy}{dx} = z.
\]
Substituting this into the second derivative we have
\[
\frac{d^2 y}{dx^2} = \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} = z \frac{dz}{dy}
\]
and thus the original second order equation becomes
\[
z \frac{dz}{dy} = f(y, z).
\]
If we can solve this last equation to get \(z = z(y, c_1) \), then the
equation used to define \(z \) becomes
\[
\frac{dy}{dx} = z(y, c_1)
\]
which, being in separable form
\[
\frac{1}{z(y, c_1)} dy = dx
\]
can be integrated to give
\[
\int^y \frac{1}{z(\eta, c_1)} d\eta = x + c_2.
\]
Then, at least in principle, we can solve this to get \(y = y(x, c_1, c_2) \). Success of the project ultimately depends on being able to get a closed form solution for the transformed second order equation, \(z \frac{dz}{dy} = f(y, z) \), which has now become a first order equation in \(z \) and \(y \).

Example 2 We consider the autonomous second order differential equation

\[
\frac{d^2y}{dx^2} = y \frac{dy}{dx}.
\]

Following the plan indicated above, we arrive at

\[
z \frac{dz}{dy} = yz \text{ or } \frac{dz}{dy} = y.
\]

This is solved immediately to obtain

\[
z = z(y, c_1) = \frac{y^2 + c_1}{2}.
\]

Then we have

\[
\frac{dy}{dx} = \frac{y^2 + c_1}{2}.
\]

There are three cases here, depending on whether \(c_1 \) is 0, positive, or negative. Taking just the case where \(c_1 \) is positive, we write \(c_1 = c^2 \) and we have

\[
\frac{2}{c^2 + y^2} dy = dx.
\]

Setting \(y = cw \) we have

\[
\frac{2}{c} \left(\frac{1}{1 + w^2} \right) dw = dx
\]

and we integrate to obtain

\[
\frac{2}{c} \tan^{-1}(w) = x + c_2.
\]
Then \(w = \tan\left(\frac{c}{2}(x + c_2)\right) \) and we have as the general solution

\[
y = y(x, c, c_2) = c \tan\left(\frac{c}{2}(x + c_2)\right).
\]

The cases corresponding to \(c_1 = 0 \) and \(c_1 < 0 \) are handled in a similar way but different expressions are obtained. (Try those cases as an exercise.)