I. Integration in Spherical Coordinates
Spherical coordinates locate points in space with two angles and one distance.

A. Definition
Spherical coordinates represent a point \(P \) in space by ordered triples \((\rho, \phi, \theta)\) in which
1. \(\rho \) is the distance from \(P \) to the origin. \(\rho \geq 0 \)
2. \(\phi \) is the angle \(\overrightarrow{OP} \) makes with the positive \(z \)-axis.
3. \(\theta \) is the angle from cylindrical coordinates.

B. Equations Relating Spherical Coordinates to Cartesian and Cylindrical Coordinates
\[
\begin{align*}
 r &= \rho \sin \phi, \quad x = r \cos \theta = \rho \sin \phi \cos \theta, \\
 z &= \rho \cos \phi, \quad y = r \sin \theta = \rho \sin \phi \sin \theta, \\
 \rho &= \sqrt{x^2 + y^2 + z^2} = \sqrt{r^2 + z^2}
\end{align*}
\]

C. Descriptions of \(\rho = a, \phi = \phi_0, \theta = \theta_0 \)
1. \(\rho = a \) describes a sphere of radius \(a \) centered at the origin.
2. \(\phi = \phi_0 \) describes a single cone whose vertex lies at the origin and whose axis lies along the \(z \)–axis.
 a. If \(\phi > \frac{\pi}{2} \) the cone \(\phi = \phi_0 \) opens downward
 b. If \(\phi < \frac{\pi}{2} \) the cone \(\phi = \phi_0 \) opens upward
 c. \(\phi = \frac{\pi}{2} \) is the \(xy \)-plane
 d. If \(\phi = 0 \) is the positive \(z \)-axis
 e. If \(\phi = \pi \) is the negative \(z \)-axis
3. \(\theta = \theta_0 \) describes a half-plane that contains the \(z \)–axis and makes an angle \(\theta_0 \) with the positive \(x \)-axis

D. Integrals in Spherical Form
1. Volume of a wedge: \(\Delta V = \Delta \rho \rho \Delta \phi \rho \sin \phi \Delta \theta = \rho^2 \sin \phi \Delta \rho \Delta \phi \Delta \theta \)
2. Volume: \(V = \iiint_D dV = \iiint_D \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \)
3. \(\iiint_D f \, dV = \iiint_D f(\rho, \phi, \theta) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \)
E. Evaluating Triple Integral in which the Integrand is the Product of Three Functions of Different Variable with Constant Limits

ONLY if the integrand is the product of 3 functions of different variables and the limits of integration are constants: \[\int_a^b \int_c^d \int_e^f g(x)h(y)k(z) \, dz \, dy \, dx = \int_a^b g(x)dx \int_c^d h(y)dy \int_e^f k(z)dz \]

F. Examples
1. Find the pt \(P = (x, y, z) \) whose spherical coordinates are \(\rho = 2, \phi = \frac{\pi}{3}, \theta = \frac{\pi}{4} \).

2. Find the spherical coordinates for the pt \(P = (0, 2\sqrt{3}, -2) \) given in rectangular coordinates.
3. Find the volume of the sphere of radius a, $x^2 + y^2 + z^2 = a^2$ using spherical coordinates.
2. Set up the integral in spherical form to find the volume of the “ice cream cone” cut from the solid sphere \(\rho \leq 5 \) by the cone \(\phi = \frac{\pi}{6} \).

3. Same region as in #2, but you “bite off the bottom of the cone” at \(\rho = 1 \).
4. Set up the integrals in spherical form to find the z-coordinate, \bar{Z}, of the center of mass of the top half of a hollow sphere whose outer radius is 4 and the inner radius is 3, if the density is $\delta(x, y, z) = x^2$.

5. Set up an iterated triple integral in spherical coordinates for the volume over the inside the sphere $x^2 + y^2 + (z - 2)^2 = 4$ and above the cone $z = \frac{1}{\sqrt{3}} \sqrt{x^2 + y^2}$.