Math 2204 Multivariable Calculus – Chapter 14: Partial Derivatives
Sec. 14.7: Maximum and Minimum Values

I. Review from 1225
A. Definitions
1. Local Extreme Values (Relative)
 a. A function \(f \) has a local maximum value at an interior point \(c \) of its domain if \(f(x) \leq f(c) \) for all \(x \) in an open interval containing \(c \).
 b. A function \(f \) has a local minimum value at an interior point \(c \) of its domain if \(f(x) \geq f(c) \) for all \(x \) in an open interval containing \(c \).

2. Critical Number
 a. A critical number of a function \(f \) is a number \(c \) in the domain of \(f \) such that \(f'(c) \) is zero or \(f'(c) \) does not exist (undefined). (A stationary point exists where \(f'(x) = 0 \) and a singular point exists where \(f'(x) \) is undefined.)
 b. If \(f \) has a local maximum or minimum at \(c \), then \(c \) is a critical number of \(f \).

3. A point where the graph of a function has a tangent line and where the concavity changes is called a point of inflection.

B. The First Derivative Test for Local Extrema
 Let \(f \) be a continuous function on \([a,b]\) and \(c \) be a critical number in \([a,b]\).
 1. If \(f'(x) \geq 0 \) on \((a,c)\) and \(f'(x) \leq 0 \) on \((c,b)\), then \(f \) has a local maximum of \(f(c) \) at \(x = c \).
 2. If \(f'(x) \leq 0 \) on \((a,c)\) and \(f'(x) \geq 0 \) on \((c,b)\), then \(f \) has a local minimum of \(f(c) \) at \(x = c \).
 3. If \(f'(x) \) does not change signs at \(x = c \), then \(f \) has no local extrema at \(x = c \).

C. The Second Derivative Test for Local Extrema
 Let \(f \) be a continuous function on \([a,b]\) and \(c \) be a critical point in \([a,b]\).
 1. If \(f''(c) < 0 \), then \(f \) has a local maximum of \(f(c) \) at \(x = c \).
 2. If \(f''(c) > 0 \), then \(f \) has a local minimum of \(f(c) \) at \(x = c \).
 3. If \(f''(c) = 0 \), then you must go back and use the First Derivative Test for Local Extrema

D. The to find absolute extrema for a function \(f \) that is continuous on a closed interval \([a,b]\).
 1. Find all critical numbers for \(f \) in \((a,b)\). (i.e. \(f'(x) \) is zero or undefined)
 2. Evaluate \(f \) at all critical numbers in \((a,b)\).
 3. Evaluate \(f \) at the endpoints \(a \) and \(b \) of the interval \([a,b] \).
4. The largest value found in Steps 2 and 3 is the absolute maximum for f on $[a,b]$. The smallest value found in Steps 2 and 3 is the absolute minimum for f on $[a,b]$.

II. Derivative Test for Local Extreme Values

A. Definitions

1. An interior point of the domain of a function $f(x,y)$ where both f_x and f_y are zero or where one or both of f_x and f_y do not exist is a critical point of f.

2. Let $f(x,y)$ be defined on a region R containing the point (a,b). Then
 a. $f(a,b)$ is a local maximum value of f if $f(a,b) \geq f(x,y)$ for all domain points (x,y) in an open disk centered at (a,b).
 b. $f(a,b)$ is a local minimum value of f if $f(a,b) \leq f(x,y)$ for all domain points (x,y) in an open disk centered at (a,b).

3. A differentiable function has a saddle point at a critical point (a,b) if in every open disk centered at (a,b) there are domain points (x,y) where $f(x,y) > f(a,b)$ and domain points (x,y) where $f(x,y) < f(a,b)$. The corresponding point $(a,b,f(a,b))$ on the surface $z = f(x,y)$ is called a saddle point of the surface.

B. Theorems

1. Theorem 10: First Derivative Test for Local Extreme Values

 If $f(x,y)$ has a local maximum or minimum value at an interior point (a,b) of its domain and if the first partial derivatives exist there, then $f_x(a,b) = 0$ and $f_y(a,b) = 0$.

2. Theorem 11: Second Derivative Test for Local Extreme Values

 Suppose that $f(x,y)$ and its first and second partial derivatives are continuous throughout a disk centered (a,b) at and that $f_x(a,b) = f_y(a,b) = 0$. Then
 i. f has a local maximum at (a,b) if $f_{xx} < 0$ and $f_{xx}f_{yy} - f_{xy}^2 > 0$ at (a,b).
 ii. f has a local minimum at (a,b) if $f_{xx} > 0$ and $f_{xx}f_{yy} - f_{xy}^2 > 0$ at (a,b).
 iii. f has a saddle point at (a,b) if $f_{xx}f_{yy} - f_{xy}^2 < 0$ at (a,b).
 iv. The test is inconclusive at (a,b) if $f_{xx}f_{yy} - f_{xy}^2 = 0$ at (a,b). In this case, we must find some other way to determine the behavior of f at (a,b).

\[
\begin{align*}
z &= -x^2 - y^2 \\
z &= x^2 + y^2 \\
z &= -x^2 + y^2
\end{align*}
\]

Local max
Local min
Saddle point
Note: $f_{xx}f_{yy} - f_{xy}^2$ is called the discriminant or Hessian of f.

C. Examples

1. Find the local extrema of the function $f(x, y) = x^4 + y^3 + 32x - 9y$.

2. Find the local extrema of the function $f(x, y) = xy^2 - 6x^2 - 3y^2 + 4$.
3. Find the local extrema of the function \(f(x,y) = 6x^2 - 2x^3 + 3y^2 + 6xy - 3 \).

II. Absolute Maxima and Minima on Closed Bounded Regions
 A. Closed vs Open, Bounded vs Nonbounded

 B. Absolute extrema for a continuous function \(f(x,y) \) that is defined on a closed and bounded region \(R \) will always be at a critical points or on the boundary

C. To find absolute extrema for a continuous function \(f(x,y) \) that is on a closed and bounded region \(R \).
 1. Find the critical points of the interior
 2. List the intersection points of bounderies/endpoints/corners
 3. Find the critical points of the boundaries
 4. Evaluate \(f \) at the points above
5. The largest value found is the absolute maximum of f on R. The smallest value found is the absolute minimum of f on R.

D. Examples
1. Find the absolute extrema of $f(x,y) = x^3 + y^4 - 12x + 4y$ on the rectangular plate $-3 \leq x \leq 0, -2 \leq y \leq 0$.

![Diagram of a rectangular plate with coordinates x from -3 to 0 and y from -2 to 0]
2. Find the absolute extrema of \(f(x, y) = x^3 + y^4 - 12x + 4y \) on the triangular plate bounded by the lines \(x = 2, y = 0, y = 2x \).
3. Find the absolute extrema of $f(x,y) = x + y^2$ on the circular region $x^2 + y^2 \leq 1$.