I. Increasing/Decreasing Functions

A. Definition: Let \(f \) be a function defined on an interval \(I \) and let \(x_1 \) and \(x_2 \) be any 2 points in \(I \).

1. \(f \) increases on \(I \) if \(f(x_1) < f(x_2) \) whenever \(x_1 < x_2 \).
2. \(f \) decreases on \(I \) if \(f(x_1) > f(x_2) \) whenever \(x_1 < x_2 \).

A function that is increasing or decreasing on \(I \) is called monotonic on \(I \).

B. The First Derivative Test for Increasing/Decreasing.
Suppose that \(f \) is continuous on \([a, b]\) and differentiable on the open interval \((a, b)\).

1. A function, \(f \), increases on \((a, b)\) if \(f'(x) > 0 \) for all \(x \) in \((a, b)\).
2. A function, \(f \), decreases on \((a, b)\) if \(f'(x) < 0 \) for all \(x \) in \((a, b)\).
3. A function, \(f \), is constant on \((a, b)\) if \(f'(x) = 0 \) for all \(x \) in \((a, b)\).

C. Example:

1. On what intervals(s) is the graph of the function above:
 a. increasing: ________________________________
 b. decreasing: ________________________________
 c. constant: ________________________________

2. On what intervals(s) is the derivative, \(f'(x) \):
 a. positive: ________________________________
 b. negative: ________________________________
 c. zero: ________________________________
 d. undefined: ________________________________
II. Critical Value/Critical Point

A. Definitions

1. A critical value of a function f is a number c in the domain of f such that $f'(c)$ is zero or $f'(c)$ does not exist (undefined).

2. A stationary point exists where $f''(x) = 0$.

3. A singular point exists where $f'(x)$ is undefined.

B. If f has a relative maximum or minimum at c, then c is a critical value of f.

C. Examples: Find the critical value(s) of the following:

1. $y = -2x^2 - 5x + 3$

2. $f(x) = x^3 + 3x^2 - 45x - 6$

3. $g(x) = \sqrt{9x - 4}$

III. Absolute Extreme Values / Absolute Extrema

A. Definitions: Let f be a function with domain D.

1. f has an absolute maximum value on D at a point c if: $f(x) \leq f(c)$ for all x in D. The number $f(c)$ is called the maximum value of f on D.

2. f has an absolute minimum value on D at a point c if: $f(x) \geq f(c)$ for all x in D. The number $f(c)$ is called the minimum value of f on D.

3. The maximum and minimum values of f are called the extreme values of f.
B. Examples: Do the following functions have absolute extrema on the given interval?

1. \([-5,10]\]

 ![Graph of a function with absolute maximum and minimum marked]

 Absolute maximum:___________

 Absolute minimum:___________

2. \([1,11]\) Are you guaranteed to have absolute extrema?

 ![Graph of a function with absolute maximum and minimum marked]

 Absolute maximum:___________

 Absolute minimum:___________

3. \(f(x) = x^2 - 2x\) on \([-1,3]\)

 ![Graph of a function with absolute maximum and minimum marked]

 Absolute maximum:___________

 Absolute minimum:___________
4. \(f(x) = x^2 - 2x \) on \((-1, 2)\)

Absolute maximum:

Absolute minimum:

5. \(f(x) = x^2 - 2x \) on \([-1, 1), (1, 2]\)

Absolute maximum:

Absolute minimum:

C. Extreme Value Theorem

1. **Theorem 1** - The Extreme Value Theorem: If \(f \) is continuous at every point of a closed interval \([a, b]\), then \(f \) attains both an absolute maximum value \(M \) and an absolute minimum value \(m \) somewhere in \([a, b]\). That is, there are numbers \(x_1 \) and \(x_2 \) in \([a, b]\), with \(f(x_1) = m, \ f(x_2) = M \), and \(m \leq f(x) \leq M \) for every other \(x \) in \([a, b]\).

2. **Note**: If the hypotheses of this theorem are met, then you are GUARANTEED the existence of a Max or Min value. If the hypotheses are not met, you MAY have a max or min value.

D. Procedure To Find Absolute Extrema on a Closed Interval, \([a, b]\):

1. Verify that the function \(f \) is continuous on \([a, b]\).
2. Find all critical values for \(f \) in \((a, b)\). (i.e. when \(f'(x) = 0 \) or undefined)
3. Evaluate \(f \) at all critical numbers in \((a, b)\).
4. Evaluate \(f \) at the endpoints \(a \) and \(b \) of the interval \([a, b]\).
5. The largest value found in Steps 3 and 4 is the absolute maximum for \(f \) on \([a, b]\).
 The smallest value found in Steps 3 and 4 is the absolute minimum for \(f \) on \([a, b]\).
E. Examples

1. a. Determine the absolute extrema for \(f(x) = x^3 - 6x^2 + 1 \) on \([-2,3]\).

 Absolute maximum: ______________ \ Absolute minimum: ______________

 b. What if the interval is changed to \([-2,5]\)?

 Absolute maximum: ______________ \ Absolute minimum: ______________

2. Determine the absolute extrema for \(g(x) = x^{\frac{4}{3}} + 4x^{\frac{1}{3}} \) on \([-2,2]\).

 Absolute maximum: ______________ \ Absolute minimum: ______________
3. Determine the absolute extrema for \(p(x) = \frac{1}{2}(\sin^2 x + \cos x) + 2\sin x - x \) on \([0, 2\pi]\).

\[
p'(x) = \frac{1}{2}(2\sin x \cos x - \sin x) + 2\cos x - 1 = \frac{1}{2}(2\cos x - 1)(\sin x + 2)
\]

Absolute maximum: ____________________ Absolute minimum: ____________________

4. Determine the absolute extrema for \(h(x) = \frac{\ln x}{x} \) on \([1, 4]\).

Absolute maximum: ____________________ Absolute minimum: ____________________
IV. Relative Extrema / Local Extrema

A. Definitions
 a. A function \(f \) has a \textbf{relative maximum} value at an interior point \(c \) of its domain if \(f(x) \leq f(c) \) for all \(x \) in some open interval containing \(c \).
 b. A function \(f \) has a \textbf{relative minimum} value at an interior point \(c \) of its domain if \(f(x) \geq f(c) \) for all \(x \) in some open interval containing \(c \).

B. The First Derivative Test for Relative Extrema

Suppose that \(c \) is a critical point of a continuous function \(f \) and that \(f \) is differentiable at every point in some interval containing \(c \) except possibly at \(c \) itself.

1. If \(f'(x) > 0 \) on \((a,c)\) and \(f'(x) < 0 \) on \((c,b)\) then \(f \) has a relative maximum of \(f(c) \) at \(x=c \).
2. If \(f'(x) < 0 \) on \((a,c)\) and \(f'(x) > 0 \) on \((c,b)\) then \(f \) has a relative minimum of \(f(c) \) at \(x=c \).
3. If \(f' \) does not change signs at \(x=c \), then \(f \) has no relative extrema at \(x=c \).

C. Steps in using the First Derivative Test for Relative Extrema

1. Find \(f'(x) \)
2. Find the critical values. (Determine where \(f'(x) = 0 \) and/or \(f'(x) \) is undefined).
3. Determine the interval(s) where \(f \) is increasing (\(f'(x) > 0 \)) and interval(s) where \(f \) is decreasing (\(f'(x) < 0 \)).
4. a. If \(f \) is continuous, then \(f(c) \) is a relative maximum if \(f \) is increasing on \((a,c)\) followed by \(f \) decreasing on \((c,b)\).
 b. If \(f \) is continuous, then \(f(c) \) is a relative minimum if \(f \) is decreasing on \((a,c)\) followed by \(f \) increasing on \((c,b)\).

D. Examples

1. Determine the \(x \)-values where the function below on the interval, \([-5,10]\) has relative extrema.

![Graph of a function with relative extrema at x-values]

Relative maximum @\(x= \)

Relative minimum @ \(x= \)
2. For the following functions, determine (a) the intervals where the function is increasing and decreasing and (b) the relative extrema.

a. \(f(x) = x^2 \)
 - \(f \) increases on ________________
 - \(f \) decreases on ________________
 - Relative maximum: ________________
 - Relative minimum: ________________

b. \(y = (2x - 1)^3 \)
 - \(f \) increases on ________________
 - \(f \) decreases on ________________
 - Relative maximum: ________________
 - Relative minimum: ________________

c. \(g(t) = \frac{1}{4}t^4 + \frac{1}{2}t^3 - 5t^2 \)
 - \(f \) increases on ________________
 - \(f \) decreases on ________________
 - Relative maximum: ________________
 - Relative minimum: ________________
d. \(h(x) = x - 2\sqrt{x} \) Note: domain is \([0, \infty)\)

\(f \) increases on ____________

\(f \) decreases on ____________

Relative maximum: ____________

Relative minimum: ____________

e. \(f(x) = xe^x \)

\(f \) increases on ____________

\(f \) decreases on ____________

Relative maximum: ____________

Relative minimum: ____________

f. Is there a relative minimum or maximum at \(x = 3.5 \)?