Math 1014: Precalculus with Transcendentals
Ch. 2: Functions and Graphs
Sec. 2.8 (part 2): Distance and Midpoint Formulas; Circles

I. Review (from test 1 material)
 A. The Distance Formula
 The distance, \(d \), between the points \((x_1, y_1)\) and \((x_2, y_2)\) is
 \[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}. \]

 B. The Midpoint Formula
 The midpoint of the line segment between the points \((x_1, y_1)\) and \((x_2, y_2)\) is
 \[
 \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right).
 \]

II. Circles
 A. Definition
 A circle is a set of all points in a plane that are equidistant from a fixed point called the center. The fixed distance from the circle's center to any point on the circle is called the radius.

 B. Standard Form of the Equation of a Circle
 The standard form of the equation of a circle with center \((h,k)\) and radius \(r\) is
 \[
 (x - h)^2 + (y - k)^2 = r^2.
 \]

 C. Examples
 Identify the center and the radius of the circle and graph.
 1. \(x^2 + y^2 = 36 \)
 Center: ____________
 Radius: ____________

 2. \((x - 3)^2 + (y + 2)^2 = 4 \)
 Center: ____________
 Radius: ____________
3. Write an equation of the circle that has a center of (-1,3) and a radius of 5 and graph.

Complete the square to put the circle in standard form. Identify the center and the radius of the circle and graph.

4. $x^2 + y^2 + 8x + 4y + 16 = 0$

5. $x^2 + y^2 - 6y - 7 = 0$