Math 1014: Precalculus with Transcendental
Ch. 2: Functions and Graphs
Sec. 2.7 Inverse Functions

I. Inverse Functions
 A. Definition of the Inverse of a Function
 Let f and g be two functions such that

 $f(g(x)) = x$ for every x in the domain of g

 and

 $g(f(x)) = x$ for every x in the domain of f.

 The function g is the inverse of the function f and is denoted by f^{-1} (read “f-inverse”).
 Thus, $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$. The domain of f is equal to the range of f^{-1}, and vice versa.

 NOTE: $f^{-1} \neq \frac{1}{f}$

 B. Verifying Inverse Functions
 1. To verify if functions are inverses of each other, show that $f(f^{-1}(x)) = x$ and
 $f^{-1}(f(x)) = x$.

 2. Examples:
 Determine whether f and g are inverses of the other.

 a. $f(x) = 3x - 7$ and $g(x) = \frac{x + 3}{7}$

 b. $f(x) = \sqrt{x - 4}$ and $g(x) = x^3 + 4$
C. Horizontal Line Test

1. Horizontal Line Test
 A function \(f \) has an inverse that is a function \(f^{-1} \), if there is no horizontal line that intersects the graph of the function \(f \) at more than one point.

2. Examples
 Determine if each of the graphs represents a function that has an inverse function.

 a. \(f(x) = x + 2 \)
 b. \(f(x) = x^2 - 1 \)
 c. \(x^2 + y^2 = 4 \)

D. One-to-One Functions

1. Definition: A function is said to be one to one (1 - 1) if no two ordered pairs have the same second component but different first component, i.e., if \(x_1 \neq x_2 \), then \(f(x_1) \neq f(x_2) \).

 NOTE: A function has one \(y \) value for each \(x \) value but those \(y \) values can repeat.
 In a 1 – 1 function the \(y \) values never repeat.

2. Examples
 \(f(x) = x^2 \) is not 1 - 1
 \(f(x) = x^3 \) is 1 - 1

3. An equation must pass the Vertical Line Test to be a Function.
 A function must pass the Horizontal Line Test to be 1 - 1.

4. If \(f \) is not 1-1, then \(f^{-1} \) does not exist.
E. Finding the Inverse of a Function.

1. Graphically
 a. Steps

 Since the domain of \(f \) is the range of \(f^{-1} \) and the range of \(f \) is the domain of \(f^{-1} \). Interchange \(x \) and \(y \) coordinates of \(f \) in order to graph \(f^{-1} \).

 * The graph of \(f^{-1} \) can be found by reflecting the graph of \(f \) over the line \(y = x \).

 b. Example

 1) The points \((0,0), (1,1), (2,4), (3,9), \) etc. are on the graph of \(f(x) = x^2, x \geq 0 \).

 Interchanging the \(x \) and the \(y \) values gives the coordinates of \(f^{-1}(x) = \sqrt{x} \), \((0,0), (1,1), (4,2), (9,3), \) etc.

 ![Graph of f and f^{-1}](image)

 2) If \(f \) has an inverse and the 4 points, \((0,1), (2,7), (5,20), (7,100), \) are on \(f \), what points must be on the inverse?

 ![Graph of f and f^{-1}](image)

 3) The graph of \(f' \) is below. Graph the inverse of \(f' \) on the same set of axes.

 ![Graph of f and f^{-1}](image)
2. Algebraically
 a. Steps
 The equation for the inverse of a function \(f \) can be found as follows:
 1) Replace \(f(x) \) with \(y \) in the equation for \(f(x) \).
 2) Interchange \(x \) and \(y \).
 3) Solve for \(y \). If this equation does not define \(y \) as a function of \(x \), the function \(f \) does not have an inverse function and this procedure ends. If this equation does define \(y \) as a function of \(x \), the function \(f \) has an inverse function.
 4) If \(f \) has an inverse function, replace \(y \) in step 3 by \(f^{-1}(x) \). We can verify our result by showing that \(f(f^{-1}(x)) = x \) and \(f^{-1}(f(x)) = x \).

b. Example
 Given \(f(x) = 2 + \sqrt{4 - x} \).
 1) Graph \(f \).

 ![Graph of f(x)](image)

2) State the domain and range of \(f \).
 Domain of \(f \): ________________ Range of \(f \): ________________
3) Find the inverse of \(f(x) = 2 + \sqrt{4-x} \)

4) State the domain and range of \(f^{-1} \).

 Domain of \(f^{-1} \): ________________ Range of \(f^{-1} \): ________________

5) Verify that \(f(f^{-1}(x)) = x \).
6) Verify that \(f^{-1}(f(x)) = x \).

7) Graph \(f^{-1} \) on the same set of axes as \(f \).