I. Domain of a Function
A. Definition
 The domain of a function is the largest set of real numbers for which the function \(f(x) \) is a real number. Exclude real numbers that cause division by zero and real numbers that result in an even root of a negative number.

 - Polynomial functions are defined for all real numbers \(x \), i.e., its domain is all real numbers, \(\mathbb{R} \).
 - The domain of rational functions is the set of real numbers, except for the numbers that make the denominator zero.
 - The domain of radical functions is the set of real numbers, except for the numbers that make the radicand of even roots negative.

B. Examples:
 Find the domain of the following.
 1. \(f(x) = x + 1 \) \(\quad D_f : \quad \) ______________
 2. \(g(x) = \sqrt{x + 1} \) \(\quad D_g : \quad \) ______________
 3. \(h(x) = \frac{3x + 4}{\sqrt{x + 1}} \) \(\quad D_h : \quad \) ______________
 4. \(k(x) = \frac{3}{x + 1} \) \(\quad D_k : \quad \) ______________

II. Combinations of Functions
A. The Algebra of Functions
 Definitions: Sum, Difference, Product, and Quotient of Functions
 Let \(f \) and \(g \) be two functions. The sum \(f + g \), the difference \(f - g \), the product \(fg \), and the quotient \(\frac{f}{g} \) are functions whose domains are the set of all real numbers common to the domains of \(f \) and \(g \) \(\left(D_f \cap D_g\right)\), defined as follows:
 1. Sum: \((f + g)(x) = f(x) + g(x) \)
 2. Difference: \((f - g)(x) = f(x) - g(x) \)
 3. Product: \((fg)(x) = f(x) \cdot g(x) \)
 4. Quotient: \(\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \), provided \(g(x) \neq 0 \).
B. Example

Given \(f(x) = \frac{1}{x} \) and \(g(x) = x - 5 \), find \(f + g \), \(f - g \), \(fg \), \(\frac{f}{g} \). Determine the domain for each function.

\[
D_f : \quad D_g : \\
\]

1. \((f + g)(x) = \quad D_{f+g} : \quad \)

2. \((f - g)(x) = \quad D_{f-g} : \quad \)

3. \((fg)(x) = \quad D_{fg} : \quad \)

4. \(\left(\frac{f}{g} \right)(x) = \quad D_{\frac{f}{g}} : \quad \)

5. \(\left(\frac{g}{f} \right)(x) = \quad D_{\frac{g}{f}} : \quad \)

III. Composite Functions

A. The Composition of a Function

The **composition of function** \(f \) **with** \(g \) is denoted by \(f \circ g \) and is defined by the equation

\[
(f \circ g)(x) = f(g(x)).
\]

The domain of the composite function \(f \circ g \) is the set of all \(x \) such that
1. \(x \) is in the domain of \(g \) and
2. \(g(x) \) is in the domain of \(f \).
B. Examples

1. Given $f(x) = \frac{1}{x}$ and $g(x) = x - 5$, find:

 a. $(f \circ g)(x) = \underline{\hspace{2cm}}$ $(f \circ g)(6) = \underline{\hspace{2cm}}$

 b. $(g \circ f)(x) = \underline{\hspace{2cm}}$ $(g \circ f)(6) = \underline{\hspace{2cm}}$

 c. $(f \circ f)(x) = \underline{\hspace{2cm}}$ $(f \circ f)(6) = \underline{\hspace{2cm}}$

 d. $(g \circ g)(x) = \underline{\hspace{2cm}}$ $(g \circ g)(6) = \underline{\hspace{2cm}}$

2. Find functions f and g such that $h(x) = (f \circ g)(x) = \sqrt{x^2 - 4}$