These Thurston maps are NET maps for every choice of translation term. They are primitive and have degree 35. ALL THURSTON MULTIPLIERS c/d IN UNREDUCED FORM 0/1, 0/5, 0/7, 1/35, 1/7, 1/5, 2/7, 2/5, 1/1, 2/1, 3/1, 4/1, 8/1, 11/1, 12/1 16/1, 19/1, 27/1 EXCLUDED INTERVALS FOR THE HALF-SPACE COMPUTATION (-infinity,-1.016959) (-0.983324,infinity ) The half-space computation does not determine rationality. EXCLUDED INTERVALS FOR JUST THE SUPPLEMENTAL HALF-SPACE COMPUTATION INTERVAL COMPUTED FOR HST OR EXTENDED HST (-1.203336,-0.830939) -1/1 EXTENDED HST The supplemental half-space computation shows that these NET maps are rational. SLOPE FUNCTION INFORMATION There are no slope function fixed points. Number of excluded intervals computed by the fixed point finder: 1752 NONTRIVIAL CYCLES 1/0 -> 0/1 -> 1/0 The slope function maps some slope to the nonslope. The slope function orbit of every slope p/q with |p| <= 50 and |q| <= 50 ends in either one of the above cycles or the nonslope. FUNDAMENTAL GROUP WREATH RECURSIONS When the translation term of the affine map is 0: NewSphereMachine( "a=<1,a*b,a^-1,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)", "b=<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,c>(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)", "c=<1,1,d,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)", "d=(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,29)(28,31)(30,33)(32,35)", "a*b*c*d"); When the translation term of the affine map is lambda1: NewSphereMachine( "a=(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)", "b=<1,b,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)", "c=(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)", "d=(1,4)(3,6)(5,8)(7,10)(9,12)(11,14)(13,16)(15,18)(17,20)(19,22)(21,24)(23,26)(25,28)(27,30)(29,32)(31,34)(33,35)", "a*b*c*d"); When the translation term of the affine map is lambda2: NewSphereMachine( "a=(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)", "b=<1,1,d,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)", "c=<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,c>(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)", "d=(1,4)(3,6)(5,8)(7,10)(9,12)(11,14)(13,16)(15,18)(17,20)(19,22)(21,24)(23,26)(25,28)(27,30)(29,32)(31,34)(33,35)", "a*b*c*d"); When the translation term of the affine map is lambda1+lambda2: NewSphereMachine( "a=<1,c^-1,c*d,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c,c^-1,c>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)", "b=(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)", "c=<1,b,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)", "d=(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,29)(28,31)(30,33)(32,35)", "a*b*c*d");